Derangements in non-Frobenius groups

Daniele Garzoni
{"title":"Derangements in non-Frobenius groups","authors":"Daniele Garzoni","doi":"arxiv-2409.03305","DOIUrl":null,"url":null,"abstract":"We prove that if $G$ is a transitive permutation group of sufficiently large\ndegree $n$, then either $G$ is primitive and Frobenius, or the proportion of\nderangements in $G$ is larger than $1/(2n^{1/2})$. This is sharp, generalizes\nsubstantially bounds of Cameron--Cohen and Guralnick--Wan, and settles a\nconjecture of Guralnick--Tiep in large degree. We also give an application to\ncoverings of varieties over finite fields.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that if $G$ is a transitive permutation group of sufficiently large degree $n$, then either $G$ is primitive and Frobenius, or the proportion of derangements in $G$ is larger than $1/(2n^{1/2})$. This is sharp, generalizes substantially bounds of Cameron--Cohen and Guralnick--Wan, and settles a conjecture of Guralnick--Tiep in large degree. We also give an application to coverings of varieties over finite fields.
非弗罗贝纽斯群中的异变
我们证明,如果 $G$ 是一个阶数足够大的 $n$ 的传递置换群,那么要么 $G$ 是基元的和弗罗贝尼斯的,要么 $G$ 中derangements 的比例大于 1/(2n^{1/2})$。这很尖锐,概括了卡梅隆-科恩(Cameron-Cohen)和古拉尼克-万(Guralnick-Wan)的边界,并在很大程度上解决了古拉尼克-铁普(Guralnick-Tiep)的一个猜想。我们还给出了有限域上变项覆盖的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信