On Heisenberg groups

Florian L. Deloup
{"title":"On Heisenberg groups","authors":"Florian L. Deloup","doi":"arxiv-2409.03399","DOIUrl":null,"url":null,"abstract":"It is known that an abelian group $A$ and a $2$-cocycle $c:A \\times A \\to C$\nyield a group ${\\mathscr{H}}(A,C,c)$ which we call a Heisenberg group. This\ngroup, a central extension of $A$, is the archetype of a class~$2$ nilpotent\ngroup. In this note, we prove that under mild conditions, any class~$2$\nnilpotent group $G$ is equivalent as an extension of $G/[G,G]$ to a Heisenberg\ngroup ${\\mathscr{H}}(G/[G,G], [G,G], c')$ whose $2$-cocycle $c'$ is\nbimultiplicative.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that an abelian group $A$ and a $2$-cocycle $c:A \times A \to C$ yield a group ${\mathscr{H}}(A,C,c)$ which we call a Heisenberg group. This group, a central extension of $A$, is the archetype of a class~$2$ nilpotent group. In this note, we prove that under mild conditions, any class~$2$ nilpotent group $G$ is equivalent as an extension of $G/[G,G]$ to a Heisenberg group ${\mathscr{H}}(G/[G,G], [G,G], c')$ whose $2$-cocycle $c'$ is bimultiplicative.
关于海森堡群
众所周知,一个无性群 $A$ 和一个 $2$ 循环 $c:A \times A \to C$ 产生一个群 ${mathscr{H}}(A,C,c)$ 我们称之为海森堡群。这个群是 $A$ 的中心扩展,是类~$2$ 无穷群的原型。在本论文中,我们将证明在温和的条件下,任何一个类~$2$无穷群 $G$都等价于$G/[G,G]$的一个扩展,即一个海森堡群 ${mathscr{H}}(G/[G,G],[G,G],c')$,其$2$循环 $c'$是二乘的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信