Affine groups as flag-transitive and point-primitive automorphism groups of symmetric designs

Seyed Hassan Alavi, Mohsen Bayat, Ashraf Daneshkhah, Alessandro Montinaro
{"title":"Affine groups as flag-transitive and point-primitive automorphism groups of symmetric designs","authors":"Seyed Hassan Alavi, Mohsen Bayat, Ashraf Daneshkhah, Alessandro Montinaro","doi":"arxiv-2409.04790","DOIUrl":null,"url":null,"abstract":"In this article, we investigate symmetric designs admitting a flag-transitive\nand point-primitive affine automorphism group. We prove that if an automorphism\ngroup $G$ of a symmetric $(v,k,\\lambda)$ design with $\\lambda$ prime is\npoint-primitive of affine type, then $G=2^{6}{:}\\mathrm{S}_{6}$ and\n$(v,k,\\lambda)=(16,6,2)$, or $G$ is a subgroup of $\\mathrm{A\\Gamma L}_{1}(q)$\nfor some odd prime power $q$. In conclusion, we present a classification of\nflag-transitive and point-primitive symmetric designs with $\\lambda$ prime,\nwhich says that such an incidence structure is a projective space\n$\\mathrm{PG}(n,q)$, it has parameter set $(15,7,3)$, $(7, 4, 2)$, $(11, 5, 2)$,\n$(11, 6, 2)$, $(16,6,2)$ or $(45, 12, 3)$, or $v=p^d$ where $p$ is an odd prime\nand the automorphism group is a subgroup of $\\mathrm{A\\Gamma L}_{1}(q)$.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate symmetric designs admitting a flag-transitive and point-primitive affine automorphism group. We prove that if an automorphism group $G$ of a symmetric $(v,k,\lambda)$ design with $\lambda$ prime is point-primitive of affine type, then $G=2^{6}{:}\mathrm{S}_{6}$ and $(v,k,\lambda)=(16,6,2)$, or $G$ is a subgroup of $\mathrm{A\Gamma L}_{1}(q)$ for some odd prime power $q$. In conclusion, we present a classification of flag-transitive and point-primitive symmetric designs with $\lambda$ prime, which says that such an incidence structure is a projective space $\mathrm{PG}(n,q)$, it has parameter set $(15,7,3)$, $(7, 4, 2)$, $(11, 5, 2)$, $(11, 6, 2)$, $(16,6,2)$ or $(45, 12, 3)$, or $v=p^d$ where $p$ is an odd prime and the automorphism group is a subgroup of $\mathrm{A\Gamma L}_{1}(q)$.
仿射群作为对称设计的旗变换群和点原初自变群
在这篇文章中,我们研究了对称设计中的旗跨和点原素仿射自变群。我们证明,如果$(v,k,\lambda)$ 对称设计的自变群$G$ 的$(v,k,\lambda)$ 素为仿射型的点直立,那么$G=2^{6}{:}\mathrm{S}_{6}$ 和$(v,k,\lambda)=(16,6,2)$,或者$G$ 是某个奇素数幂 $q$ 的 $\mathrm{A\Gamma L}_{1}(q)$ 的子群。最后,我们提出了一个关于$\lambda$质数的lag-transitive和point-primitive对称设计的分类,即这样的入射结构是一个投影空间$mathrm{PG}(n,q)$、它的参数集是 $(15,7,3)$、$(7, 4, 2)$、$(11, 5, 2)$、$(11, 6, 2)$、$(16,6,2)$ 或 $(45,12,3)$,或者 $v=p^d$,其中 $p$ 是奇素数,而自形群是 $\mathrm{A\Gamma L}_{1}(q)$ 的子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信