{"title":"Self‐normalization inference for linear trends in cointegrating regressions","authors":"Cheol‐Keun Cho","doi":"10.1111/jtsa.12771","DOIUrl":null,"url":null,"abstract":"In this article, statistical tests concerning the trend coefficient in cointegrating regressions are addressed for the case when the stochastic regressors have deterministic linear trends. The self‐normalization (SN) approach is adopted for developing inferential methods in the integrated and modified ordinary least squares (IMOLS) estimation framework. Two different self‐normalizers are used to construct the SN test statistics: a functional of the recursive IMOLS estimators and a functional of the IMOLS residuals. These two self‐normalizers produce two SN tests, denoted by and respectively. Neither test requires studentization with a heteroskedasticity and autocorrelation consistent (HAC) estimator. A trimming parameter must be chosen to implement the test, whereas the test does not require any tuning parameter. In the simulation, the test exhibits the smallest size distortion among the inferential methods examined in this article. However, this may come with some loss of power, particularly in small samples.","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"10 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/jtsa.12771","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, statistical tests concerning the trend coefficient in cointegrating regressions are addressed for the case when the stochastic regressors have deterministic linear trends. The self‐normalization (SN) approach is adopted for developing inferential methods in the integrated and modified ordinary least squares (IMOLS) estimation framework. Two different self‐normalizers are used to construct the SN test statistics: a functional of the recursive IMOLS estimators and a functional of the IMOLS residuals. These two self‐normalizers produce two SN tests, denoted by and respectively. Neither test requires studentization with a heteroskedasticity and autocorrelation consistent (HAC) estimator. A trimming parameter must be chosen to implement the test, whereas the test does not require any tuning parameter. In the simulation, the test exhibits the smallest size distortion among the inferential methods examined in this article. However, this may come with some loss of power, particularly in small samples.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.