{"title":"Mean‐preserving rounding integer‐valued ARMA models","authors":"Christian H. Weiß, Fukang Zhu","doi":"10.1111/jtsa.12774","DOIUrl":null,"url":null,"abstract":"In the past four decades, research on count time series has made significant progress, but research on ‐valued time series is relatively rare. Existing ‐valued models are mainly of autoregressive structure, where the use of the rounding operator is very natural. Because of the discontinuity of the rounding operator, the formulation of the corresponding model identifiability conditions and the computation of parameter estimators need special attention. It is also difficult to derive closed‐form formulae for crucial stochastic properties. We rediscover a stochastic rounding operator, referred to as mean‐preserving rounding, which overcomes the above drawbacks. Then, a novel class of ‐valued ARMA models based on the new operator is proposed, and the existence of stationary solutions of the models is established. Stochastic properties including closed‐form formulae for (conditional) moments, autocorrelation function, and conditional distributions are obtained. The advantages of our novel model class compared to existing ones are demonstrated. In particular, our model construction avoids identifiability issues such that maximum likelihood estimation is possible. A simulation study is provided, and the appealing performance of the new models is shown by several real‐world data sets.","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"91 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/jtsa.12774","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In the past four decades, research on count time series has made significant progress, but research on ‐valued time series is relatively rare. Existing ‐valued models are mainly of autoregressive structure, where the use of the rounding operator is very natural. Because of the discontinuity of the rounding operator, the formulation of the corresponding model identifiability conditions and the computation of parameter estimators need special attention. It is also difficult to derive closed‐form formulae for crucial stochastic properties. We rediscover a stochastic rounding operator, referred to as mean‐preserving rounding, which overcomes the above drawbacks. Then, a novel class of ‐valued ARMA models based on the new operator is proposed, and the existence of stationary solutions of the models is established. Stochastic properties including closed‐form formulae for (conditional) moments, autocorrelation function, and conditional distributions are obtained. The advantages of our novel model class compared to existing ones are demonstrated. In particular, our model construction avoids identifiability issues such that maximum likelihood estimation is possible. A simulation study is provided, and the appealing performance of the new models is shown by several real‐world data sets.
在过去的四十年里,计数时间序列的研究取得了长足的进步,但对-值时间序列的研究却相对较少。现有的-值模型主要是自回归结构,其中舍入算子的使用非常自然。由于舍入算子的不连续性,相应的模型可识别性条件的制定和参数估计值的计算需要特别注意。此外,也很难推导出关键随机属性的闭式公式。我们重新发现了一种随机舍入算子,称为均值保留舍入,它克服了上述缺点。然后,基于新算子提出了一类新的有值 ARMA 模型,并确定了模型静态解的存在性。研究还获得了随机属性,包括(条件)矩、自相关函数和条件分布的闭式公式。与现有模型相比,我们的新型模型类的优势得到了证明。特别是,我们的模型构建避免了可识别性问题,因此可以进行最大似然估计。我们还提供了一项模拟研究,并通过几个真实世界的数据集展示了新模型的优越性能。
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.