The algebraic cheap rebuilding property

Kevin Li, Clara Loeh, Marco Moraschini, Roman Sauer, Matthias Uschold
{"title":"The algebraic cheap rebuilding property","authors":"Kevin Li, Clara Loeh, Marco Moraschini, Roman Sauer, Matthias Uschold","doi":"arxiv-2409.05774","DOIUrl":null,"url":null,"abstract":"We present an axiomatic approach to combination theorems for various\nhomological properties of groups and, more generally, of chain complexes.\nExamples of such properties include algebraic finiteness properties,\n$\\ell^2$-invisibility, $\\ell^2$-acyclicity, lower bounds for Novikov--Shubin\ninvariants, and vanishing of homology growth. We introduce an algebraic version\nof Ab\\'ert--Bergeron--Fr\\k{a}czyk--Gaboriau's cheap rebuilding property that\nimplies vanishing of torsion homology growth and admits a combination theorem.\nAs an application, we show that certain graphs of groups with amenable vertex\ngroups and elementary amenable edge groups have vanishing torsion homology\ngrowth.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an axiomatic approach to combination theorems for various homological properties of groups and, more generally, of chain complexes. Examples of such properties include algebraic finiteness properties, $\ell^2$-invisibility, $\ell^2$-acyclicity, lower bounds for Novikov--Shubin invariants, and vanishing of homology growth. We introduce an algebraic version of Ab\'ert--Bergeron--Fr\k{a}czyk--Gaboriau's cheap rebuilding property that implies vanishing of torsion homology growth and admits a combination theorem. As an application, we show that certain graphs of groups with amenable vertex groups and elementary amenable edge groups have vanishing torsion homology growth.
代数廉价重建特性
这些性质的例子包括代数有限性性质、$\ell^2$-不可见性、$\ell^2$-acyclicity、Novikov--Shubininariants 的下界以及同调增长的消失。我们引入了Ab\'ert--Bergeron-Fr\k{a}czyk--Gaboriau 的廉价重建性质的代数版本,它暗示了扭转同调增长的消失,并允许一个组合定理。作为应用,我们证明了某些具有可处理顶点群和基本可处理边群的群的图具有扭转同调增长的消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信