{"title":"On semitopological simple inverse $ω$-semigroups with compact maximal subgroups","authors":"Oleg Gutik, Kateryna Maksymyk","doi":"arxiv-2409.06344","DOIUrl":null,"url":null,"abstract":"We describe the structure of simple inverse Hausdorff semitopological\n$\\omega$-semigroups with compact maximal subgroups. In particular we show that\nif $S$ is a simple inverse Hausdorff semitopological $\\omega$-semigroups with\ncompact maximal subgroups, then $S$ is topologically isomorphic to the\nBruck--Reilly extension\n$\\left(\\textbf{BR}(T,\\theta),\\tau_{\\textbf{BR}}^{\\oplus}\\right)$ of a finite\nsemilattice $T=\\left[E;G_\\alpha,\\varphi_{\\alpha,\\beta}\\right]$ of compact\ngroups $G_\\alpha$ in the class of topological inverse semigroups, where\n$\\tau_{\\textbf{BR}}^{\\oplus}$ is the sum direct topology on\n$\\textbf{BR}(T,\\theta)$. Also we prove that every Hausdorff locally compact\nshift-continuous topology on the simple inverse Hausdorff semitopological\n$\\omega$-semigroups with compact maximal subgroups with adjoined zero is either\ncompact or discrete.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We describe the structure of simple inverse Hausdorff semitopological
$\omega$-semigroups with compact maximal subgroups. In particular we show that
if $S$ is a simple inverse Hausdorff semitopological $\omega$-semigroups with
compact maximal subgroups, then $S$ is topologically isomorphic to the
Bruck--Reilly extension
$\left(\textbf{BR}(T,\theta),\tau_{\textbf{BR}}^{\oplus}\right)$ of a finite
semilattice $T=\left[E;G_\alpha,\varphi_{\alpha,\beta}\right]$ of compact
groups $G_\alpha$ in the class of topological inverse semigroups, where
$\tau_{\textbf{BR}}^{\oplus}$ is the sum direct topology on
$\textbf{BR}(T,\theta)$. Also we prove that every Hausdorff locally compact
shift-continuous topology on the simple inverse Hausdorff semitopological
$\omega$-semigroups with compact maximal subgroups with adjoined zero is either
compact or discrete.