Conjugacy classes of completely reducible cyclic subgroups of GL$(2, q)$

Prashun Kumar, Geetha Venkataraman
{"title":"Conjugacy classes of completely reducible cyclic subgroups of GL$(2, q)$","authors":"Prashun Kumar, Geetha Venkataraman","doi":"arxiv-2409.07244","DOIUrl":null,"url":null,"abstract":"Let $m$ be a positive integer such that $p$ does not divide $m$ where $p$ is\nprime. In this paper we find the number of conjugacy classes of completely\nreducible cyclic subgroups in GL$(2, q)$ of order $m$, where $q$ is a power of\n$p$.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $m$ be a positive integer such that $p$ does not divide $m$ where $p$ is prime. In this paper we find the number of conjugacy classes of completely reducible cyclic subgroups in GL$(2, q)$ of order $m$, where $q$ is a power of $p$.
GL$(2, q)$ 的完全还原循环子群的共轭类
让 $m$ 为正整数,使得 $p$ 不除 $m$,其中 $p$ 为质数。在本文中,我们将找出阶为 $m$(其中 $q$ 是 $p$ 的幂次)的 GL$(2,q)$中完全可简化循环子群的共轭类的数目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信