{"title":"Threshold friction velocity influenced by soil particle size within the Columbia Plateau, northwestern United States","authors":"Ruibing Meng, Zhongju Meng, Brenton Sharratt, Jianguo Zhang, Jiale Cai, Xiaoyan Chen","doi":"10.1007/s40333-024-0081-4","DOIUrl":null,"url":null,"abstract":"<p>Wind erosion is a geomorphic process in arid and semi-arid areas and has substantial implications for regional climate and desertification. In the Columbia Plateau of northwestern United States, the emissions from fine particles of loessial soils often contribute to the exceedance of inhalable particulate matter (PM) with an aerodynamic diameter of 10 µm or less (PM10) according to the air quality standards. However, little is known about the threshold friction velocity (TFV) for particles of different sizes that comprise these soils. In this study, soil samples of two representative soil types (Warden sandy loam and Ritzville silt loam) collected from the Columbia Plateau were sieved to seven particle size fractions, and an experiment was then conducted to determine the relationship between TFV and particle size fraction. The results revealed that soil particle size significantly affected the initiation of soil movement and TFV; TFV ranged 0.304–0.844 and 0.249–0.739 m/s for different particle size fractions of Ritzville silt loam and Warden sandy loam, respectively. PM10 and total suspended particulates (TSP) emissions from a bed of 63–90 µm soil particles were markedly higher for Warden sandy loam than for Ritzville silt loam. Together with the lower TFV of Warden sandy loam, dust emissions from fine particles (<100 µm in diameter) of Warden sandy loam thus may be a main contributor to dust in the region’s atmosphere, since the PM10 emissions from the soil erosion surfaces and its ensuing suspension within the atmosphere constitute an essential process of soil erosion in the Columbia Plateau. Developing and implementing strategic land management practices on sandy loam soils is therefore necessary to control dust emissions in the Columbia Plateau.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0081-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wind erosion is a geomorphic process in arid and semi-arid areas and has substantial implications for regional climate and desertification. In the Columbia Plateau of northwestern United States, the emissions from fine particles of loessial soils often contribute to the exceedance of inhalable particulate matter (PM) with an aerodynamic diameter of 10 µm or less (PM10) according to the air quality standards. However, little is known about the threshold friction velocity (TFV) for particles of different sizes that comprise these soils. In this study, soil samples of two representative soil types (Warden sandy loam and Ritzville silt loam) collected from the Columbia Plateau were sieved to seven particle size fractions, and an experiment was then conducted to determine the relationship between TFV and particle size fraction. The results revealed that soil particle size significantly affected the initiation of soil movement and TFV; TFV ranged 0.304–0.844 and 0.249–0.739 m/s for different particle size fractions of Ritzville silt loam and Warden sandy loam, respectively. PM10 and total suspended particulates (TSP) emissions from a bed of 63–90 µm soil particles were markedly higher for Warden sandy loam than for Ritzville silt loam. Together with the lower TFV of Warden sandy loam, dust emissions from fine particles (<100 µm in diameter) of Warden sandy loam thus may be a main contributor to dust in the region’s atmosphere, since the PM10 emissions from the soil erosion surfaces and its ensuing suspension within the atmosphere constitute an essential process of soil erosion in the Columbia Plateau. Developing and implementing strategic land management practices on sandy loam soils is therefore necessary to control dust emissions in the Columbia Plateau.
期刊介绍:
The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large.
The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.