The Gromov-Lawson-Rosenberg Conjecture for Z/4xZ/4

Noe Barcenas, Luis Eduardo Garcia-Hernandez, Raphael Reinauer
{"title":"The Gromov-Lawson-Rosenberg Conjecture for Z/4xZ/4","authors":"Noe Barcenas, Luis Eduardo Garcia-Hernandez, Raphael Reinauer","doi":"arxiv-2408.07895","DOIUrl":null,"url":null,"abstract":"We prove the Gromov-Lawson-Rosenberg Conjecture for the group Z/4xZ/4 by\ncomputing the connective real k-homology of the classifying space with the\nAdams spectral sequence and two types of detection theorems for the kernel of\nthe alpha invariant: one based on eta-invariants, closely following work of\nBotvinnik-Gilkey-Stolz, and a second one based on homological methods. Along\nthe way, we determine differentials of the Adams spectral sequence for\nclassifying spaces involved in the computation, and we study the cap structure\nof the Adams spectral sequence for sub-hopf algebras of the Steenrod algebra\nrelevant to the computation of connective real and complex k-homology.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the Gromov-Lawson-Rosenberg Conjecture for the group Z/4xZ/4 by computing the connective real k-homology of the classifying space with the Adams spectral sequence and two types of detection theorems for the kernel of the alpha invariant: one based on eta-invariants, closely following work of Botvinnik-Gilkey-Stolz, and a second one based on homological methods. Along the way, we determine differentials of the Adams spectral sequence for classifying spaces involved in the computation, and we study the cap structure of the Adams spectral sequence for sub-hopf algebras of the Steenrod algebra relevant to the computation of connective real and complex k-homology.
Z/4xZ/4 的格罗莫夫-劳森-罗森伯格猜想
我们通过用亚当斯谱序列计算分类空间的连通实k-组学,证明了Z/4xZ/4群的格罗莫夫-劳森-罗森伯格猜想,并证明了α不变式内核的两类探测定理:一类基于等变式,紧跟博特温尼克-吉尔基-斯托尔兹的工作;另一类基于同调方法。在此过程中,我们确定了亚当斯谱序列对计算所涉及的空间进行分类的差分,并研究了与计算连通实数和复数 k-同调相关的斯泰恩罗德代数的子跳弗代数的亚当斯谱序列的盖结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信