Dévissage Hermitian Theory

Satya Mandal
{"title":"Dévissage Hermitian Theory","authors":"Satya Mandal","doi":"arxiv-2408.09633","DOIUrl":null,"url":null,"abstract":"We prove D\\'{e}vissage theorems for Hermitian $K$ Theory (or $GW$ theory),\nanalogous to Quillen's D\\'{e}vissage theorem for $K$-theory. For abelian\ncategories ${\\mathscr A}:=({\\mathscr A}, ^{\\vee}, \\varpi)$ with duality, and\nappropriate abelian subcategories ${\\mathscr B}\\subseteq {\\mathscr A}$, we\nprove D\\'{e}vissage theorems for ${\\bf GW}$ spaces, $G{\\mathcal W}$-spectra and\n${\\mathbb G}W$ bispectra. As a consequence, for regular local rings $(R, \\m,\n\\kappa)$ with $1/2\\in R$, we compute the ${\\BG}W$ groups ${\\mathbb\nG}W^{[n]}_k(\\spec{R})~\\forall k, n\\in {\\mathbb Z}$, where $n$ represent the\ntranslation.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove D\'{e}vissage theorems for Hermitian $K$ Theory (or $GW$ theory), analogous to Quillen's D\'{e}vissage theorem for $K$-theory. For abelian categories ${\mathscr A}:=({\mathscr A}, ^{\vee}, \varpi)$ with duality, and appropriate abelian subcategories ${\mathscr B}\subseteq {\mathscr A}$, we prove D\'{e}vissage theorems for ${\bf GW}$ spaces, $G{\mathcal W}$-spectra and ${\mathbb G}W$ bispectra. As a consequence, for regular local rings $(R, \m, \kappa)$ with $1/2\in R$, we compute the ${\BG}W$ groups ${\mathbb G}W^{[n]}_k(\spec{R})~\forall k, n\in {\mathbb Z}$, where $n$ represent the translation.
赫米蒂理论
我们证明了赫米蒂$K$理论(或$GW$理论)的D/'{e}vissage定理,类似于奎伦的$K$理论的D/'{e}vissage定理。对于abeliancategories $\{mathscr A}:=({\mathscr A}, ^{\vee}, \varpi)$具有对偶性,以及适当的无性子类${/mathscr B} (子集){/mathscr A}$,我们证明了${/bf GW}$空间、$G{mathcal W}$谱和${/mathbb G}W$双谱的D\'{e}vissage 定理。因此,对于在 R$ 中有 $1/2 的正则局部环 $(R,\m,\kappa)$,我们计算了 ${\BG}W$ 群 ${\mathbbG}W^{[n]}_k(\spec{R})~\forall k, n\in {\mathbb Z}$,其中 $n$ 代表平移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信