Cellular homology of compact groups: Split real forms

Mauro Patrão, Ricardo Sandoval
{"title":"Cellular homology of compact groups: Split real forms","authors":"Mauro Patrão, Ricardo Sandoval","doi":"arxiv-2408.16795","DOIUrl":null,"url":null,"abstract":"In this article, we use the Bruhat and Schubert cells to calculate the\ncellular homology of the maximal compact subgroup $K$ of a connected semisimple\nLie group $G$ whose Lie algebra is a split real form. We lift to the maximal\ncompact subgroup the previously known attaching maps for the maximal flag\nmanifold and use it to characterize algebraically the incidence order between\nSchubert cells. We also present algebraic formulas to compute the boundary maps\nwhich extend to the maximal compact subgroups similar formulas obtained in the\ncase of the maximal flag manifolds. Finally, we apply our results to calculate\nthe cellular homology of $\\mbox{SO}(3)$ as the maximal compact subgroup of\n$\\mbox{SL}(3, \\mathbb{R})$ and the cellular homology of $\\mbox{SO}(4)$ as the\nmaximal compact subgroup of the split real form $G_2$.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we use the Bruhat and Schubert cells to calculate the cellular homology of the maximal compact subgroup $K$ of a connected semisimple Lie group $G$ whose Lie algebra is a split real form. We lift to the maximal compact subgroup the previously known attaching maps for the maximal flag manifold and use it to characterize algebraically the incidence order between Schubert cells. We also present algebraic formulas to compute the boundary maps which extend to the maximal compact subgroups similar formulas obtained in the case of the maximal flag manifolds. Finally, we apply our results to calculate the cellular homology of $\mbox{SO}(3)$ as the maximal compact subgroup of $\mbox{SL}(3, \mathbb{R})$ and the cellular homology of $\mbox{SO}(4)$ as the maximal compact subgroup of the split real form $G_2$.
紧凑群的细胞同源性拆分实数形式
在这篇文章中,我们利用布鲁哈特和舒伯特单元来计算一个连通的半简单李群$G$的最大紧凑子群$K$的单元同源性,该李群的李代数是一个分裂实形式。我们将之前已知的最大旗面形的附图提升到最大紧凑子群,并用它来描述舒伯特单元之间入射阶的代数特征。我们还提出了计算边界映射的代数公式,这些公式把在最大旗流形情况下得到的类似公式推广到了最大紧凑子群。最后,我们应用我们的结果计算了作为$\mbox{SO}(3, \mathbb{R})$的最大紧凑子群的$\mbox{SO}(3)$的细胞同源性,以及作为分裂实形式$G_2$的最大紧凑子群的$\mbox{SO}(4)$的细胞同源性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信