Combinatorial free chain complexes over quotient polynomial rings

Daniel Bravo
{"title":"Combinatorial free chain complexes over quotient polynomial rings","authors":"Daniel Bravo","doi":"arxiv-2408.14695","DOIUrl":null,"url":null,"abstract":"We present a procedure that constructs, in a combinatorial manner, a chain\ncomplex of free modules over a polynomial ring in finitely many variables,\nmodulo an ideal generated by quadratic monomials. Applying this procedure to\ntwo specific rings and one family of rings, we demonstrate that the resulting\nchain complex is indeed an exact chain complex and thus a free resolution.\nUtilizing this free resolution, we show that, for these rings, the injective\ndimension is infinite, as modules over itself. Finally, we propose the\nconjecture that this procedure always yields a free resolution.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a procedure that constructs, in a combinatorial manner, a chain complex of free modules over a polynomial ring in finitely many variables, modulo an ideal generated by quadratic monomials. Applying this procedure to two specific rings and one family of rings, we demonstrate that the resulting chain complex is indeed an exact chain complex and thus a free resolution. Utilizing this free resolution, we show that, for these rings, the injective dimension is infinite, as modules over itself. Finally, we propose the conjecture that this procedure always yields a free resolution.
商多项式环上的组合自由链复数
我们提出了一种程序,它以组合的方式,在有限多个变量的多项式环上,通过二次单项式生成的理想模,构造出自由模块的链式复数。将这一过程应用于两个特定的环和一个环族,我们证明了所得到的链复数确实是一个精确的链复数,因此是一个自由解析。利用这个自由解析,我们证明了对于这些环,注入维度是无限的,就像模块在自身上一样。最后,我们提出了这样一个猜想:这一过程总是会产生一个自由解析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信