Koszul duality and a classification of stable Weiss towers

Connor Malin, Niall Taggart
{"title":"Koszul duality and a classification of stable Weiss towers","authors":"Connor Malin, Niall Taggart","doi":"arxiv-2409.01335","DOIUrl":null,"url":null,"abstract":"We introduce a version of Koszul duality for categories, which extends the\nKoszul duality of operads and right modules. We demonstrate that the\nderivatives which appear in Weiss calculus (with values in spectra) form a\nright module over the Koszul dual of the category of vector spaces and\northogonal surjections, resolving conjectures of Arone--Ching and Espic. Using\ncategorical Fourier transforms, we then classify Weiss towers. In particular,\nwe describe the $n$-th polynomial approximation as a pullback of the $(n-1)$-st\npolynomial approximation along a ``generalized norm map''.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a version of Koszul duality for categories, which extends the Koszul duality of operads and right modules. We demonstrate that the derivatives which appear in Weiss calculus (with values in spectra) form a right module over the Koszul dual of the category of vector spaces and orthogonal surjections, resolving conjectures of Arone--Ching and Espic. Using categorical Fourier transforms, we then classify Weiss towers. In particular, we describe the $n$-th polynomial approximation as a pullback of the $(n-1)$-st polynomial approximation along a ``generalized norm map''.
科斯祖尔对偶性和稳定魏斯塔的分类
我们为范畴引入了一个科斯祖尔对偶性版本,它扩展了操作数和右模块的科斯祖尔对偶性。我们证明了韦斯微积分中出现的衍生物(在谱中有值)构成了向量空间和正交射影范畴的科斯祖尔对偶的右模块,解决了阿罗尼-程和埃斯皮克的猜想。利用分类傅立叶变换,我们对魏斯塔进行了分类。特别是,我们将 $n$-th 多项式近似描述为沿 "广义规范映射 "的 $(n-1)$-st 多项式近似的回拉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信