Witt vectors and $δ$-Cartier rings

Kirill Magidson
{"title":"Witt vectors and $δ$-Cartier rings","authors":"Kirill Magidson","doi":"arxiv-2409.03877","DOIUrl":null,"url":null,"abstract":"We give a universal property of the construction of the ring of $p$-typical\nWitt vectors of a commutative ring, endowed with Witt vectors Frobenius and\nVerschiebung, and generalize this construction to the derived setting. We\ndefine an $\\infty$-category of $p$-typical derived $\\delta$-Cartier rings and\nshow that the derived ring of $p$-typical Witt vectors of a derived ring is\nnaturally an object in this $\\infty$-category. Moreover, we show that for any\nprime $p$, the formation of the derived ring of $p$-typical Witt vectors gives\nan equivalence between the $\\infty$-category of all derived rings and the full\nsubcategory of all derived $p$-typical $\\delta$-Cartier rings consisting of\n$V$-complete objects.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"183 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give a universal property of the construction of the ring of $p$-typical Witt vectors of a commutative ring, endowed with Witt vectors Frobenius and Verschiebung, and generalize this construction to the derived setting. We define an $\infty$-category of $p$-typical derived $\delta$-Cartier rings and show that the derived ring of $p$-typical Witt vectors of a derived ring is naturally an object in this $\infty$-category. Moreover, we show that for any prime $p$, the formation of the derived ring of $p$-typical Witt vectors gives an equivalence between the $\infty$-category of all derived rings and the full subcategory of all derived $p$-typical $\delta$-Cartier rings consisting of $V$-complete objects.
维特向量和δ$-卡蒂埃环
我们给出了一个交换环的 $p$-typical 维特向量环的构造的普遍性质,赋予了维特向量弗罗贝尼乌斯和弗尔希本,并将这一构造推广到派生环境。我们定义了一个$p$-典型派生$\delta$-卡蒂埃环的$\infty$-类别,并证明派生环的$p$-典型维特向量的派生环自然不是这个$\infty$-类别中的对象。此外,我们还证明,对于任意prime $p$,$p$-典型维特向量的派生环的形成给出了所有派生环的$infty$-类别与由$V$-完整对象组成的所有派生$p$-典型$\delta$-卡蒂埃环的全子类之间的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信