Computational strategies for cross-species knowledge transfer and translational biomedicine

Hao Yuan, Christopher A. Mancuso, Kayla Johnson, Ingo Braasch, Arjun Krishnan
{"title":"Computational strategies for cross-species knowledge transfer and translational biomedicine","authors":"Hao Yuan, Christopher A. Mancuso, Kayla Johnson, Ingo Braasch, Arjun Krishnan","doi":"arxiv-2408.08503","DOIUrl":null,"url":null,"abstract":"Research organisms provide invaluable insights into human biology and\ndiseases, serving as essential tools for functional experiments, disease\nmodeling, and drug testing. However, evolutionary divergence between humans and\nresearch organisms hinders effective knowledge transfer across species. Here,\nwe review state-of-the-art methods for computationally transferring knowledge\nacross species, primarily focusing on methods that utilize transcriptome data\nand/or molecular networks. We introduce the term \"agnology\" to describe the\nfunctional equivalence of molecular components regardless of evolutionary\norigin, as this concept is becoming pervasive in integrative data-driven models\nwhere the role of evolutionary origin can become unclear. Our review addresses\nfour key areas of information and knowledge transfer across species: (1)\ntransferring disease and gene annotation knowledge, (2) identifying agnologous\nmolecular components, (3) inferring equivalent perturbed genes or gene sets,\nand (4) identifying agnologous cell types. We conclude with an outlook on\nfuture directions and several key challenges that remain in cross-species\nknowledge transfer.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Research organisms provide invaluable insights into human biology and diseases, serving as essential tools for functional experiments, disease modeling, and drug testing. However, evolutionary divergence between humans and research organisms hinders effective knowledge transfer across species. Here, we review state-of-the-art methods for computationally transferring knowledge across species, primarily focusing on methods that utilize transcriptome data and/or molecular networks. We introduce the term "agnology" to describe the functional equivalence of molecular components regardless of evolutionary origin, as this concept is becoming pervasive in integrative data-driven models where the role of evolutionary origin can become unclear. Our review addresses four key areas of information and knowledge transfer across species: (1) transferring disease and gene annotation knowledge, (2) identifying agnologous molecular components, (3) inferring equivalent perturbed genes or gene sets, and (4) identifying agnologous cell types. We conclude with an outlook on future directions and several key challenges that remain in cross-species knowledge transfer.
跨物种知识转移和转化生物医学的计算策略
研究生物为人类生物学和疾病提供了宝贵的见解,是功能实验、疾病建模和药物测试的重要工具。然而,人类与研究生物之间的进化差异阻碍了跨物种知识的有效传递。在此,我们回顾了计算跨物种知识转移的最新方法,主要集中在利用转录组数据和/或分子网络的方法上。我们引入了 "生态学"(agnology)一词来描述分子成分的功能等同性,而不论其进化起源如何,因为这一概念在数据驱动的综合模型中正变得非常普遍,在这种模型中,进化起源的作用可能变得不明确。我们的综述涉及跨物种信息和知识转移的四个关键领域:(1) 转移疾病和基因注释知识,(2) 识别同源分子成分,(3) 推断等效扰动基因或基因组,以及 (4) 识别同源细胞类型。最后,我们展望了未来的发展方向以及跨物种知识转移仍面临的几个关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信