Asymptotic Behavior of a Stochastic Generalized Nutrient–Phytoplankton–Zooplankton Model

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Peng Li, Xiaofeng Zhang, Rong Yuan
{"title":"Asymptotic Behavior of a Stochastic Generalized Nutrient–Phytoplankton–Zooplankton Model","authors":"Peng Li, Xiaofeng Zhang, Rong Yuan","doi":"10.1007/s00332-024-10070-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the stochastic nutrient–phytoplankton–zooplankton model with nutrient cycle. In order to take stochastic fluctuations into account, we add the stochastic increments to the variations of biomass of nutrition, phytoplankton and zooplankton during time interval <span>\\(\\Delta t\\)</span>, thus we obtain the corresponding stochastic model. Subsequently, we explore the existence, uniqueness and stochastically ultimate boundness of global positive solution. By constructing suitable Lyapunov function, we also obtain <i>V</i>-geometric ergodicity of this model. In addition, the sufficient conditions of exponential extinction and persistence in the mean of plankton are established. At last, we present some numerical simulations to validate theoretical results and analyze the impacts of some important parameters.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10070-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the stochastic nutrient–phytoplankton–zooplankton model with nutrient cycle. In order to take stochastic fluctuations into account, we add the stochastic increments to the variations of biomass of nutrition, phytoplankton and zooplankton during time interval \(\Delta t\), thus we obtain the corresponding stochastic model. Subsequently, we explore the existence, uniqueness and stochastically ultimate boundness of global positive solution. By constructing suitable Lyapunov function, we also obtain V-geometric ergodicity of this model. In addition, the sufficient conditions of exponential extinction and persistence in the mean of plankton are established. At last, we present some numerical simulations to validate theoretical results and analyze the impacts of some important parameters.

Abstract Image

随机广义营养物-浮游植物-浮游动物模型的渐近行为
本文考虑了具有营养循环的随机营养-浮游植物-浮游动物模型。为了将随机波动考虑在内,我们在营养、浮游植物和浮游动物生物量变化的时间间隔(\△t\)内加入随机增量,从而得到相应的随机模型。随后,我们探讨了全局正解的存在性、唯一性和随机终极约束性。通过构造合适的 Lyapunov 函数,我们还得到了该模型的 V 几何遍历性。此外,我们还建立了指数消亡和浮游生物均值持久性的充分条件。最后,我们给出了一些数值模拟来验证理论结果,并分析了一些重要参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信