New Criterions on Nonexistence of Periodic Orbits of Planar Dynamical Systems and Their Applications

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hebai Chen, Hao Yang, Rui Zhang, Xiang Zhang
{"title":"New Criterions on Nonexistence of Periodic Orbits of Planar Dynamical Systems and Their Applications","authors":"Hebai Chen, Hao Yang, Rui Zhang, Xiang Zhang","doi":"10.1007/s00332-024-10075-x","DOIUrl":null,"url":null,"abstract":"<p>Characterizing existence or not of periodic orbit is a classical problem, and it has both theoretical importance and many real applications. Here, several new criterions on nonexistence of periodic orbits of the planar dynamical system <span>\\(\\dot{x}=y,~\\dot{y}=-g(x)-f(x,y)y\\)</span> are obtained and by examples shows that these criterions are applicable, but the known ones are invalid to them. Based on these criterions, we further characterize the local topological structures of its equilibrium, which also show that one of the classical results by Andreev (Am Math Soc Transl 8:183–207, 1958) on local topological classification of the degenerate equilibrium is incomplete. Finally, as another application of these results, we classify the global phase portraits of a planar differential system, which comes from the third question in the list of the 33 questions posed by A. Gasull and also from a mechanical oscillator under suitable restriction to its parameters.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10075-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Characterizing existence or not of periodic orbit is a classical problem, and it has both theoretical importance and many real applications. Here, several new criterions on nonexistence of periodic orbits of the planar dynamical system \(\dot{x}=y,~\dot{y}=-g(x)-f(x,y)y\) are obtained and by examples shows that these criterions are applicable, but the known ones are invalid to them. Based on these criterions, we further characterize the local topological structures of its equilibrium, which also show that one of the classical results by Andreev (Am Math Soc Transl 8:183–207, 1958) on local topological classification of the degenerate equilibrium is incomplete. Finally, as another application of these results, we classify the global phase portraits of a planar differential system, which comes from the third question in the list of the 33 questions posed by A. Gasull and also from a mechanical oscillator under suitable restriction to its parameters.

Abstract Image

平面动力系统周期轨道不存在的新标准及其应用
描述周期轨道的存在与否是一个经典问题,它既有重要的理论意义,又有许多实际应用。在此,我们得到了平面动力系统 \(\dot{x}=y,~\dot{y}=-g(x)-f(x,y)y\) 周期轨道不存在的几个新判据,并通过实例证明了这些判据是适用的,而已知判据对其无效。根据这些判据,我们进一步描述了其均衡的局部拓扑结构,这也表明安德烈耶夫(Am Math Soc Transl 8:183-207, 1958)关于退化均衡的局部拓扑分类的一个经典结果是不完整的。最后,作为这些结果的另一个应用,我们对平面微分系统的全局相位肖像进行了分类,该系统来自 A. Gasull 提出的 33 个问题中的第三个问题,也来自对其参数进行适当限制的机械振荡器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信