Exact first passage time distribution for second-order reactions in chemical networks

Changqian Rao, David Waxman, Wei Lin, Zhuoyi Song
{"title":"Exact first passage time distribution for second-order reactions in chemical networks","authors":"Changqian Rao, David Waxman, Wei Lin, Zhuoyi Song","doi":"arxiv-2409.02698","DOIUrl":null,"url":null,"abstract":"The first passage time (FPT) is a generic measure that quantifies when a\nrandom quantity reaches a specific state. We consider the FTP distribution in\nnonlinear stochastic biochemical networks, where obtaining exact solutions of\nthe distribution is a challenging problem. Even simple two-particle collisions\ncause strong nonlinearities that hinder the theoretical determination of the\nfull FPT distribution. Previous research has either focused on analyzing the\nmean FPT, which provides limited information about a system, or has considered\ntime-consuming stochastic simulations that do not clearly expose causal\nrelationships between parameters and the system's dynamics. This paper presents\nthe first exact theoretical solution of the full FPT distribution in a broad\nclass of chemical reaction networks involving $A + B \\rightarrow C$ type of\nsecond-order reactions. Our exact theoretical method outperforms stochastic\nsimulations, in terms of computational efficiency, and deviates from\napproximate analytical solutions. Given the prevalence of bimolecular reactions\nin biochemical systems, our approach has the potential to enhance the\nunderstanding of real-world biochemical processes.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The first passage time (FPT) is a generic measure that quantifies when a random quantity reaches a specific state. We consider the FTP distribution in nonlinear stochastic biochemical networks, where obtaining exact solutions of the distribution is a challenging problem. Even simple two-particle collisions cause strong nonlinearities that hinder the theoretical determination of the full FPT distribution. Previous research has either focused on analyzing the mean FPT, which provides limited information about a system, or has considered time-consuming stochastic simulations that do not clearly expose causal relationships between parameters and the system's dynamics. This paper presents the first exact theoretical solution of the full FPT distribution in a broad class of chemical reaction networks involving $A + B \rightarrow C$ type of second-order reactions. Our exact theoretical method outperforms stochastic simulations, in terms of computational efficiency, and deviates from approximate analytical solutions. Given the prevalence of bimolecular reactions in biochemical systems, our approach has the potential to enhance the understanding of real-world biochemical processes.
化学网络中二阶反应的精确首过时间分布
首次通过时间(FPT)是一种通用度量,用于量化随机量何时达到特定状态。我们考虑了非线性随机生化网络中的 FTP 分布,在这种网络中,获得分布的精确解是一个具有挑战性的问题。即使是简单的双粒子碰撞也会导致强烈的非线性,从而阻碍了完整 FPT 分布的理论确定。以往的研究要么专注于分析主题 FPT,而这只能提供系统的有限信息;要么考虑耗时的随机模拟,而这并不能清楚地揭示参数与系统动力学之间的因果关系。本文首次提出了涉及 $A + B\rightarrow C$ 类型二阶反应的一类化学反应网络中全 FPT 分布的精确理论解。我们的精确理论方法在计算效率方面优于随机模拟,并偏离了近似分析解。鉴于双分子反应在生化系统中的普遍性,我们的方法有可能增强对现实世界生化过程的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信