Chaotic Dynamics at the Boundary of a Basin of Attraction via Non-transversal Intersections for a Non-global Smooth Diffeomorphism

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ernest Fontich, Antonio Garijo, Xavier Jarque
{"title":"Chaotic Dynamics at the Boundary of a Basin of Attraction via Non-transversal Intersections for a Non-global Smooth Diffeomorphism","authors":"Ernest Fontich, Antonio Garijo, Xavier Jarque","doi":"10.1007/s00332-024-10079-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we give analytic proofs of the existence of transversal homoclinic points for a family of non-globally smooth diffeomorphisms having the origin as a fixed point which come out as a truncated map governing the local dynamics near a critical period three-cycle associated with the Secant map. Using Moser’s version of Birkhoff–Smale’s theorem, we prove that the boundary of the basin of attraction of the origin contains a Cantor-like invariant subset such that the restricted dynamics to it is conjugate to the full shift of <i>N</i>-symbols for any integer <span>\\(N\\ge 2\\)</span> or infinity.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10079-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give analytic proofs of the existence of transversal homoclinic points for a family of non-globally smooth diffeomorphisms having the origin as a fixed point which come out as a truncated map governing the local dynamics near a critical period three-cycle associated with the Secant map. Using Moser’s version of Birkhoff–Smale’s theorem, we prove that the boundary of the basin of attraction of the origin contains a Cantor-like invariant subset such that the restricted dynamics to it is conjugate to the full shift of N-symbols for any integer \(N\ge 2\) or infinity.

Abstract Image

通过非全局光滑衍射的非横向交叉在吸引盆地边界的混沌动力学
在本文中,我们给出了以原点为定点的非全局平滑差分变换系的横向同轴点存在性的解析证明,该系以截断映射的形式出现,支配着与塞康特映射相关的临界周期三周期附近的局部动力学。利用莫泽尔(Moser)版本的伯克霍夫-斯梅尔(Birkhoff-Smale)定理,我们证明了原点吸引盆的边界包含一个类似康托尔(Cantor)的不变量子集,对于任意整数(N\ge 2\)或无穷大,该子集的受限动力学与N符号的全移共轭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信