{"title":"Solitary-Wave Solutions of the Fractional Nonlinear Schrödinger Equation: I—Existence and Numerical Generation","authors":"Angel Durán, Nuria Reguera","doi":"10.1007/s00332-024-10086-8","DOIUrl":null,"url":null,"abstract":"<p>The present paper is the first part of a project devoted to the fractional nonlinear Schrödinger (fNLS) equation. It is concerned with the existence and numerical generation of the solitary-wave solutions. For the first point, some conserved quantities of the problem are used to search for solitary-wave solutions from a constrained critical point problem and the application of the concentration-compactness theory. Several properties of the waves, such as the regularity and the asymptotic decay in some cases, are derived from the existence result. Some other properties, such as the monotone behavior and the speed-amplitude relation, will be explored computationally. To this end, a numerical procedure for the generation of the profiles is proposed. The method is based on a Fourier pseudospectral approximation of the differential system for the profiles and the use of Petviashvili’s iteration with extrapolation.\n</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"10 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10086-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The present paper is the first part of a project devoted to the fractional nonlinear Schrödinger (fNLS) equation. It is concerned with the existence and numerical generation of the solitary-wave solutions. For the first point, some conserved quantities of the problem are used to search for solitary-wave solutions from a constrained critical point problem and the application of the concentration-compactness theory. Several properties of the waves, such as the regularity and the asymptotic decay in some cases, are derived from the existence result. Some other properties, such as the monotone behavior and the speed-amplitude relation, will be explored computationally. To this end, a numerical procedure for the generation of the profiles is proposed. The method is based on a Fourier pseudospectral approximation of the differential system for the profiles and the use of Petviashvili’s iteration with extrapolation.
期刊介绍:
The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.
All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.