{"title":"On Ramanujan expansions and primes in arithmetic progressions","authors":"Maurizio Laporta","doi":"10.1007/s12188-024-00282-4","DOIUrl":null,"url":null,"abstract":"<p>A celebrated theorem of Delange gives a sufficient condition for an arithmetic function to be the sum of the associated Ramanujan expansion with the coefficients provided by a previous result of Wintner. By applying the Delange theorem to the correlation of the von Mangoldt function with its incomplete form, we deduce an inequality involving the counting function of the prime numbers in arithmetic progressions. A remarkable aspect is that such an inequality is equivalent to the famous conjectural formula by Hardy and Littlewood for the twin primes.</p>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12188-024-00282-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A celebrated theorem of Delange gives a sufficient condition for an arithmetic function to be the sum of the associated Ramanujan expansion with the coefficients provided by a previous result of Wintner. By applying the Delange theorem to the correlation of the von Mangoldt function with its incomplete form, we deduce an inequality involving the counting function of the prime numbers in arithmetic progressions. A remarkable aspect is that such an inequality is equivalent to the famous conjectural formula by Hardy and Littlewood for the twin primes.
德朗日的一个著名定理给出了一个充分条件,即一个算术函数是相关的拉马努扬展开式与温特纳以前的一个结果所提供的系数之和。通过将德朗日定理应用于 von Mangoldt 函数与其不完全形式的相关性,我们推导出了一个涉及算术级数中素数计数函数的不等式。值得注意的是,这个不等式等价于哈代和利特尔伍德关于孪生素数的著名猜想公式。
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.