Progressive Effect of Dual-Hybridization in Friction Stir Welding by Ultrasonic Energy and Electric Current for Joining Dissimilar Material Al6063 Aluminum Alloy and C26000 Copper Alloy

IF 1.6 4区 材料科学 Q2 Materials Science
Ivy Chowdhury, Kaushik Sengupta, Puspendu Chandra Chandra, Swapna Roy, Sujit Ghosal, Arpan Kumar Mondal
{"title":"Progressive Effect of Dual-Hybridization in Friction Stir Welding by Ultrasonic Energy and Electric Current for Joining Dissimilar Material Al6063 Aluminum Alloy and C26000 Copper Alloy","authors":"Ivy Chowdhury, Kaushik Sengupta, Puspendu Chandra Chandra, Swapna Roy, Sujit Ghosal, Arpan Kumar Mondal","doi":"10.1007/s12666-024-03418-5","DOIUrl":null,"url":null,"abstract":"<p>Friction Stir Welding (FSW) has become a trusted method for joining softer alloys like Aluminum and copper. However, for achieving improved joint efficiency and dissimilar joints, secondary heat sources are being used to make the materials softer to enhance the mixing through stirring. In this present work, a comparative study of multiple hybridization techniques to Friction Stir Welding was performed by utilizing two different energy sources viz. resistive heating through electric current and ultrasonic energy (UE). Different combinations of the hybridization studied for utilizing the multiple hybridization technique to the FSW process for improving the weld efficacy and defects-free weld even in case of dissimilar joints. A comparative study of the mechanical properties obtained by varying the process parameters have been performed. Three process parameters have been selected including UE (10 kHz), electric current (75–125 Amps), tool rotational speed (400–600 rpm), and tool transverse rate (30–50 mm/min). A significant improvement in the mechanical behavior has been monitored by adding electric current to the UAFSW by an in-house developed fixture. Similar optimistic results in the improvement of the property have been found by adding UE to EAFSW. A comparative study in the mechanical property has been presented to explain the improvement in the property. Microstructure study was also performed to analyze the behavior of Al–Cu joint.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"6 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03418-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Friction Stir Welding (FSW) has become a trusted method for joining softer alloys like Aluminum and copper. However, for achieving improved joint efficiency and dissimilar joints, secondary heat sources are being used to make the materials softer to enhance the mixing through stirring. In this present work, a comparative study of multiple hybridization techniques to Friction Stir Welding was performed by utilizing two different energy sources viz. resistive heating through electric current and ultrasonic energy (UE). Different combinations of the hybridization studied for utilizing the multiple hybridization technique to the FSW process for improving the weld efficacy and defects-free weld even in case of dissimilar joints. A comparative study of the mechanical properties obtained by varying the process parameters have been performed. Three process parameters have been selected including UE (10 kHz), electric current (75–125 Amps), tool rotational speed (400–600 rpm), and tool transverse rate (30–50 mm/min). A significant improvement in the mechanical behavior has been monitored by adding electric current to the UAFSW by an in-house developed fixture. Similar optimistic results in the improvement of the property have been found by adding UE to EAFSW. A comparative study in the mechanical property has been presented to explain the improvement in the property. Microstructure study was also performed to analyze the behavior of Al–Cu joint.

Abstract Image

超声波能量和电流在摩擦搅拌焊中的双混合渐进效应,用于接合异种材料 Al6063 铝合金和 C26000 铜合金
摩擦搅拌焊接 (FSW) 已成为连接铝和铜等较软合金的可靠方法。然而,为了提高接合效率和实现异种接合,目前正在使用辅助热源使材料变软,以通过搅拌加强混合。在本研究中,通过利用两种不同的能量源,即电流电阻加热和超声波能量(UE),对摩擦搅拌焊接的多种混合技术进行了比较研究。研究了不同的杂化组合,以便将多重杂化技术用于搅拌摩擦焊工艺,从而提高焊接效率,即使在异种接头的情况下也能实现无缺陷焊接。对通过改变工艺参数获得的机械性能进行了比较研究。我们选择了三个工艺参数,包括 UE(10 千赫)、电流(75-125 安培)、工具转速(400-600 转/分钟)和工具横向速率(30-50 毫米/分钟)。通过内部开发的夹具为 UAFSW 增加电流,监测到机械性能有了明显改善。通过在 EAFSW 中添加 UE,在改善性能方面也发现了类似的乐观结果。对机械性能进行了比较研究,以解释性能改善的原因。此外,还进行了微观结构研究,以分析铝铜接头的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transactions of The Indian Institute of Metals
Transactions of The Indian Institute of Metals Materials Science-Metals and Alloys
CiteScore
2.60
自引率
6.20%
发文量
3
期刊介绍: Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering. Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信