Surface phase diagram of CsSnI3 from first-principles calculations

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kejia Li, Chadawan Khamdang, Mengen Wang
{"title":"Surface phase diagram of CsSnI3 from first-principles calculations","authors":"Kejia Li, Chadawan Khamdang, Mengen Wang","doi":"10.1103/physrevmaterials.8.093401","DOIUrl":null,"url":null,"abstract":"<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CsSnI</mi><mn>3</mn></msub></math> is widely studied as an environmentally friendly Pb-free perovskite material for optoelectronic device applications. To further improve material and device performance, it is important to understand the surface structures of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CsSnI</mi><mn>3</mn></msub></math>. We generate surface structures with various stoichiometries, perform density functional theory calculations to create phase diagrams of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CsSnI</mi><mn>3</mn></msub></math> (001), (110), and (100) surfaces, and determine the most stable surfaces under a wide range of Cs, Sn, and I chemical potentials. Under I-rich conditions, surfaces with Cs vacancies are stable, which lead to partially occupied surface states above the valence band maximum. Under I-poor conditions, we find the stoichiometric (100) surface to be stable under a wide region of the phase diagram, which does not have any surface states and can contribute to long charge-carrier lifetimes. Consequently, the I-poor (Sn-rich) conditions will be more beneficial to improve the device performance.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"149 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.093401","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

CsSnI3 is widely studied as an environmentally friendly Pb-free perovskite material for optoelectronic device applications. To further improve material and device performance, it is important to understand the surface structures of CsSnI3. We generate surface structures with various stoichiometries, perform density functional theory calculations to create phase diagrams of the CsSnI3 (001), (110), and (100) surfaces, and determine the most stable surfaces under a wide range of Cs, Sn, and I chemical potentials. Under I-rich conditions, surfaces with Cs vacancies are stable, which lead to partially occupied surface states above the valence band maximum. Under I-poor conditions, we find the stoichiometric (100) surface to be stable under a wide region of the phase diagram, which does not have any surface states and can contribute to long charge-carrier lifetimes. Consequently, the I-poor (Sn-rich) conditions will be more beneficial to improve the device performance.

Abstract Image

第一原理计算得出的 CsSnI3 表面相图
CsSnI3 作为一种用于光电器件应用的环保型无铅包晶材料,已被广泛研究。为了进一步提高材料和器件的性能,了解 CsSnI3 的表面结构非常重要。我们生成了具有各种化学计量的表面结构,进行了密度泛函理论计算,绘制了 CsSnI3 (001)、(110) 和 (100) 表面的相图,并确定了在各种 Cs、Sn 和 I 化学势下最稳定的表面。在 I 丰富的条件下,具有铯空位的表面是稳定的,这会导致价带最大值以上的部分占据表面态。在 I 贫乏的条件下,我们发现化学计量(100)表面在相图的很宽区域内是稳定的,它没有任何表面态,可导致较长的电荷载流子寿命。因此,贫离子(富含锡)条件更有利于提高器件性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review Materials
Physical Review Materials Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
5.80
自引率
5.90%
发文量
611
期刊介绍: Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信