Nikhilesh Maity, Ravi Kashikar, S. Lisenkov, I. Ponomareva
{"title":"Giant spin splitting and its origin in methylhydrazinium lead halide perovskites","authors":"Nikhilesh Maity, Ravi Kashikar, S. Lisenkov, I. Ponomareva","doi":"10.1103/physrevmaterials.8.l091402","DOIUrl":null,"url":null,"abstract":"Spin splitting, or removal of spin degeneracy in the electronic energy band/level, is often a measure of spin-orbit coupling strength and a way to manipulate spin degrees of freedom. We use first-principles simulations to predict giant spin splitting in methylhydrazinium lead halide (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>MHyPbX</mi><mn>3</mn></msub><mo>,</mo><mo> </mo><mrow><mi>MHy</mi><mo>=</mo><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>NH</mi><mn>2</mn></msub><msub><mi>NH</mi><mn>2</mn></msub></mrow><mo>,</mo><mo> </mo><mrow><mi>X</mi></mrow></math> = Br and Cl) hybrid organic-inorganic perovskites. The values can reach up to 408.0 meV at zero Kelvin and 281.6 meV at room temperature. The origin of the effect is traced to the large distortion of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>PbX</mi><mn>3</mn></msub></math> framework, driven primarily by Pb ions in the ferroelectric <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi mathvariant=\"normal\">Γ</mi><mrow><mn>3</mn><mo>−</mo></mrow></msup></math> mode. The Pb displacements consist of a combination of polar and antipolar arrangements and result in up to 39.2 meV/atom enhancement of the spin-orbit coupling energy in the polar phase of the materials. The spin-orbit coupling gives origin to persistent spin textures in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>MHyPbX</mi><mn>3</mn></msub></math>, which are desirable for applications in spintronics and quantum computing. Our findings reveal an additional functionality for hybrid organic-inorganic perovskite and open a way for the design of more materials with giant spin splitting.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.l091402","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spin splitting, or removal of spin degeneracy in the electronic energy band/level, is often a measure of spin-orbit coupling strength and a way to manipulate spin degrees of freedom. We use first-principles simulations to predict giant spin splitting in methylhydrazinium lead halide ( = Br and Cl) hybrid organic-inorganic perovskites. The values can reach up to 408.0 meV at zero Kelvin and 281.6 meV at room temperature. The origin of the effect is traced to the large distortion of framework, driven primarily by Pb ions in the ferroelectric mode. The Pb displacements consist of a combination of polar and antipolar arrangements and result in up to 39.2 meV/atom enhancement of the spin-orbit coupling energy in the polar phase of the materials. The spin-orbit coupling gives origin to persistent spin textures in , which are desirable for applications in spintronics and quantum computing. Our findings reveal an additional functionality for hybrid organic-inorganic perovskite and open a way for the design of more materials with giant spin splitting.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.