{"title":"A remark on the norm of the parallel sum","authors":"Ali Zamani","doi":"10.1007/s00013-024-02048-z","DOIUrl":null,"url":null,"abstract":"<div><p>It is shown that if <span>\\(a\\!:\\!b\\)</span> is the parallel sum of the two positive definite elements <i>a</i> and <i>b</i> of a <span>\\(C^*\\)</span>-algebra, then for any <span>\\(s, t\\in [0, 1]\\)</span>, </p><div><div><span>$$\\begin{aligned} \\big \\Vert a\\!:\\!b\\big \\Vert \\le \\frac{1}{2}\\left( \\Vert a\\Vert \\!:\\!\\Vert b\\Vert + \\frac{\\Vert a\\Vert :\\Vert b\\Vert }{\\Vert a\\Vert +\\Vert b\\Vert }\\sqrt{\\left( \\Vert a\\Vert -\\Vert b\\Vert \\right) ^2 +4\\left\\| a^{1-s}b^{t}\\right\\| \\left\\| a^{s}b^{1-t}\\right\\| }\\,\\right) . \\end{aligned}$$</span></div></div><p>This inequality, which is sharper than the inequality <span>\\(\\big \\Vert a\\!:\\!b\\big \\Vert \\le \\Vert a\\Vert \\!:\\!\\Vert b\\Vert \\)</span>, generalizes an earlier related inequality.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 6","pages":"635 - 639"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02048-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is shown that if \(a\!:\!b\) is the parallel sum of the two positive definite elements a and b of a \(C^*\)-algebra, then for any \(s, t\in [0, 1]\),
This inequality, which is sharper than the inequality \(\big \Vert a\!:\!b\big \Vert \le \Vert a\Vert \!:\!\Vert b\Vert \), generalizes an earlier related inequality.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.