Ananth Hari Ramakrishnan, Muthaiah Rajappa, Kannan Kirthivasan, Nachiappan Chockalingam, Panagiotis E. Chatzistergos, Rengarajan Amirtharajan
{"title":"A Systematic Survey on Segmentation Algorithms for Musculoskeletal Tissues in Ultrasound Imaging","authors":"Ananth Hari Ramakrishnan, Muthaiah Rajappa, Kannan Kirthivasan, Nachiappan Chockalingam, Panagiotis E. Chatzistergos, Rengarajan Amirtharajan","doi":"10.1007/s11831-024-10171-x","DOIUrl":null,"url":null,"abstract":"<p>Ultrasound imaging is widely used for the clinical assessment and study of musculoskeletal tissues because of its capacity for real-time imaging, low cost, high availability and portability. Objectively identifying and segmenting these tissues in ultrasound images can enhance disease diagnosis and biomechanical research. Manual segmentation is tedious, time-consuming and examiner-dependent. At the same time, ultrasound images suffer from poor image quality and low contrast between different regions in the image, making visual interpretation difficult. Hence, there is a need for reliable algorithms for computerised segmentation. This paper reviews the techniques developed for automated and semi-automated segmentation of vital musculoskeletal tissues (i.e. tendon, ligament, bone, muscle, plantar fascia and cartilage) from ultrasound images. This paper comprehensively explains each methodology and discusses distinguishing features, advantages and limitations to help the reader decide the most appropriate method on an application-specific basis.</p>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"174 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11831-024-10171-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasound imaging is widely used for the clinical assessment and study of musculoskeletal tissues because of its capacity for real-time imaging, low cost, high availability and portability. Objectively identifying and segmenting these tissues in ultrasound images can enhance disease diagnosis and biomechanical research. Manual segmentation is tedious, time-consuming and examiner-dependent. At the same time, ultrasound images suffer from poor image quality and low contrast between different regions in the image, making visual interpretation difficult. Hence, there is a need for reliable algorithms for computerised segmentation. This paper reviews the techniques developed for automated and semi-automated segmentation of vital musculoskeletal tissues (i.e. tendon, ligament, bone, muscle, plantar fascia and cartilage) from ultrasound images. This paper comprehensively explains each methodology and discusses distinguishing features, advantages and limitations to help the reader decide the most appropriate method on an application-specific basis.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.