Spectral structure of a class of self-similar spectral measures with product form digit sets

IF 1.1 2区 数学 Q1 MATHEMATICS
Mingxuan Jiang, Jian-Feng Lu, Sai-Di Wei
{"title":"Spectral structure of a class of self-similar spectral measures with product form digit sets","authors":"Mingxuan Jiang, Jian-Feng Lu, Sai-Di Wei","doi":"10.1007/s43037-024-00368-4","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\mu \\)</span> be a Borel probability measure with compact support on <span>\\({\\mathbb {R}}\\)</span>, we say <span>\\(\\mu \\)</span> is a spectral measure if there exists a countable set <span>\\(\\Lambda \\subset {\\mathbb {R}}\\)</span> such that the collection of exponential functions <span>\\(E(\\Lambda ):=\\{e^{-2\\pi i\\langle \\lambda , x\\rangle }: \\lambda \\in \\Lambda \\}\\)</span> forms an orthonormal basis for the Hilbert space <span>\\(L^2(\\mu )\\)</span>. In this case, <span>\\(\\Lambda \\)</span> is called a spectrum of <span>\\(\\mu \\)</span>. In this paper, we first characterize the spectral structure of self-similar spectral measures <span>\\(\\mu _{t,D}\\)</span> on <span>\\({\\mathbb {R}}\\)</span>, where <i>D</i> is a strict product-form digit set with respect to an integer <i>b</i> and <i>t</i> is an integer which has a proper factor <i>b</i>. And then we settle the spectral eigenvalue (or scaling spectrum) problem for the spectral measure <span>\\(\\mu _{t,D}\\)</span>.</p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"96 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00368-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mu \) be a Borel probability measure with compact support on \({\mathbb {R}}\), we say \(\mu \) is a spectral measure if there exists a countable set \(\Lambda \subset {\mathbb {R}}\) such that the collection of exponential functions \(E(\Lambda ):=\{e^{-2\pi i\langle \lambda , x\rangle }: \lambda \in \Lambda \}\) forms an orthonormal basis for the Hilbert space \(L^2(\mu )\). In this case, \(\Lambda \) is called a spectrum of \(\mu \). In this paper, we first characterize the spectral structure of self-similar spectral measures \(\mu _{t,D}\) on \({\mathbb {R}}\), where D is a strict product-form digit set with respect to an integer b and t is an integer which has a proper factor b. And then we settle the spectral eigenvalue (or scaling spectrum) problem for the spectral measure \(\mu _{t,D}\).

一类具有乘积形式数字集的自相似谱度量的谱结构
让 \\mu \) 是一个在 \\({\mathbb {R}}\) 上具有紧凑支持的 Borel 概率度量,如果存在一个可数集 \\Lambda \子集 {\mathbb {R}}\) 使得指数函数集合 \(E(\Lambda ):={e^{-2\pi i\langle \lambda , x\rangle }:\)构成了希尔伯特空间 \(L^2(\mu )\) 的正交基础。)在这种情况下,\(\Lambda \)被称为\(\mu \)的谱。在本文中,我们首先描述了\({\mathbb {R}}\) 上自相似谱度量 \(\mu _{t,D}\) 的谱结构,其中 D 是关于整数 b 的严格积形式数字集,t 是具有适当因子 b 的整数。然后我们解决了谱度量 \(\mu _{t,D}\) 的谱特征值(或缩放谱)问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信