Synergistically enhanced photoelectrocatalytic degradation of ciprofloxacin via oxygen vacancies and internal electric field on a NiSe2/WO3 photoanode

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Tunde L. Yusuf, Babatope O. Ojo, Talifhani Mushiana, Nonhlangabezo Mabuba, Omotayo A. Arotiba, Seshibe Makgato
{"title":"Synergistically enhanced photoelectrocatalytic degradation of ciprofloxacin via oxygen vacancies and internal electric field on a NiSe2/WO3 photoanode","authors":"Tunde L. Yusuf, Babatope O. Ojo, Talifhani Mushiana, Nonhlangabezo Mabuba, Omotayo A. Arotiba, Seshibe Makgato","doi":"10.1039/d4cy00729h","DOIUrl":null,"url":null,"abstract":"This study presents the <em>in situ</em> deposition of nickel selenide (NiSe<small><sub>2</sub></small>) on tungsten trioxide (WO<small><sub>3</sub></small>) nanorods to enhance the photoelectrocatalytic degradation of organic pollutants in water. The synthesis involves integrating nickel selenide (NiSe<small><sub>2</sub></small>) and tungsten trioxide (WO<small><sub>3</sub></small>) nanorod to form a heterojunction, utilizing a facile <em>in situ</em> growth method. The resulting NiSe<small><sub>2</sub></small>/WO<small><sub>3</sub></small> heterojunction exhibits enhanced photocatalytic properties attributed to efficient charge separation, improved charge transfer dynamics, and synergistic catalytic activity created by an internal electric field and oxygen vacancy. The heterojunction demonstrates remarkable performance in the degradation of ciprofloxacin under visible light irradiation. Under optimum conditions, the photodegradation of ciprofloxacin reached 89% (0.0179 min<small><sup>−1</sup></small>) compared to pristine WO<small><sub>3</sub></small>, which only achieved 48% (0.0069 min<small><sup>−1</sup></small>) under the same conditions. The study systematically investigates the structural and morphological characteristics of the NiSe<small><sub>2</sub></small>/WO<small><sub>3</sub></small> heterojunction and elucidates its superior photocatalytic efficacy through comprehensive experimental analyses. The primary reactive species responsible for CIP degradation were identified as photogenerated h<small><sup>+</sup></small> and ˙OH. The successful development of the NiSe<small><sub>2</sub></small>/WO<small><sub>3</sub></small> heterojunction holds significant promise for advancing environmentally sustainable technologies in water treatment and pollution remediation.","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cy00729h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the in situ deposition of nickel selenide (NiSe2) on tungsten trioxide (WO3) nanorods to enhance the photoelectrocatalytic degradation of organic pollutants in water. The synthesis involves integrating nickel selenide (NiSe2) and tungsten trioxide (WO3) nanorod to form a heterojunction, utilizing a facile in situ growth method. The resulting NiSe2/WO3 heterojunction exhibits enhanced photocatalytic properties attributed to efficient charge separation, improved charge transfer dynamics, and synergistic catalytic activity created by an internal electric field and oxygen vacancy. The heterojunction demonstrates remarkable performance in the degradation of ciprofloxacin under visible light irradiation. Under optimum conditions, the photodegradation of ciprofloxacin reached 89% (0.0179 min−1) compared to pristine WO3, which only achieved 48% (0.0069 min−1) under the same conditions. The study systematically investigates the structural and morphological characteristics of the NiSe2/WO3 heterojunction and elucidates its superior photocatalytic efficacy through comprehensive experimental analyses. The primary reactive species responsible for CIP degradation were identified as photogenerated h+ and ˙OH. The successful development of the NiSe2/WO3 heterojunction holds significant promise for advancing environmentally sustainable technologies in water treatment and pollution remediation.

Abstract Image

通过 NiSe2/WO3 光阳极上的氧空位和内电场协同增强环丙沙星的光电催化降解能力
本研究介绍了在三氧化钨(WO3)纳米棒上原位沉积硒化镍(NiSe2)以增强光电催化降解水中有机污染物的方法。该合成涉及利用一种简便的原位生长方法,将硒化镍(NiSe2)和三氧化钨(WO3)纳米棒整合形成异质结。由此产生的 NiSe2/WO3 异质结具有更强的光催化性能,这归功于高效的电荷分离、更好的电荷转移动力学以及由内部电场和氧空位产生的协同催化活性。该异质结在可见光照射下降解环丙沙星的过程中表现出卓越的性能。在最佳条件下,环丙沙星的光降解率达到 89% (0.0179 min-1),而原始 WO3 在相同条件下的光降解率仅为 48% (0.0069 min-1)。该研究系统地研究了 NiSe2/WO3 异质结的结构和形态特征,并通过全面的实验分析阐明了其卓越的光催化功效。研究发现,导致 CIP 降解的主要活性物种是光生 h+ 和 ˙OH。NiSe2/WO3 异质结的成功开发为推进水处理和污染修复领域的环境可持续技术带来了巨大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信