Yuyeol Choi , Xinkai Wu , Ji-Woong Lee , Kyungsu Na
{"title":"Catalytic dehydrogenation for hydrogen production controlled by metal-supported heterogeneous catalysts","authors":"Yuyeol Choi , Xinkai Wu , Ji-Woong Lee , Kyungsu Na","doi":"10.1039/d4cy00875h","DOIUrl":null,"url":null,"abstract":"<div><div>Dehydrogenation is a chemical reaction that produces value-added hydrogen-deficient chemical compounds with hydrogen molecules that can be ubiquitously used in chemical industries. Due to the bond-breaking process, dehydrogenation is usually endothermic, and it requires high energy input for achieving the sufficient reaction performance. Therefore, catalysts play an important role in lowering the activation barrier, and thereby enhancing the activity and reaction rate, and they also govern the product selectivity <em>via</em> control of the reaction pathway on the catalyst surface. The metal–support interaction (MSI) is a unique interaction occurring at the interface of metal nanoparticles and metal oxide supports in the solid-phase heterogeneous catalysts, which changes the electronic properties of the catalyst surface and hence the catalytic process. The control of MSI in the design of heterogeneous catalysts provided many opportunities for developing advanced catalysts having better catalytic performance. Herein, our comprehensive review explores the significant impact of MSI on catalyst design, emphasizing enhanced activity, superior product selectivity, and prolonged catalyst lifetime in dehydrogenation reactions. The discussion is structured around diverse perhydro molecules, highlighting the versatile applicability of MSI in tailoring catalysts for specific dehydrogenation processes.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S204447532400501X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dehydrogenation is a chemical reaction that produces value-added hydrogen-deficient chemical compounds with hydrogen molecules that can be ubiquitously used in chemical industries. Due to the bond-breaking process, dehydrogenation is usually endothermic, and it requires high energy input for achieving the sufficient reaction performance. Therefore, catalysts play an important role in lowering the activation barrier, and thereby enhancing the activity and reaction rate, and they also govern the product selectivity via control of the reaction pathway on the catalyst surface. The metal–support interaction (MSI) is a unique interaction occurring at the interface of metal nanoparticles and metal oxide supports in the solid-phase heterogeneous catalysts, which changes the electronic properties of the catalyst surface and hence the catalytic process. The control of MSI in the design of heterogeneous catalysts provided many opportunities for developing advanced catalysts having better catalytic performance. Herein, our comprehensive review explores the significant impact of MSI on catalyst design, emphasizing enhanced activity, superior product selectivity, and prolonged catalyst lifetime in dehydrogenation reactions. The discussion is structured around diverse perhydro molecules, highlighting the versatile applicability of MSI in tailoring catalysts for specific dehydrogenation processes.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.