{"title":"Synergistic effect of Pd/CZO catalysts and an electric field on complete combustion of lean and humid methane at low temperatures","authors":"Kei Sugiura, Takuma Higo, Nobuki Matsumoto, Harunobu Tedzuka, Yasushi Sekine","doi":"10.1039/d4cy00699b","DOIUrl":null,"url":null,"abstract":"The elimination of unburned methane produced by internal combustion engines is extremely important because of the strong greenhouse effect of methane. Difficulties in controlling unburned methane arise from its characteristics, such as its difficulty of adsorption, low exhaust gas temperatures in an efficient engine, low concentrations of unburned emitted methane, and the coexistence of steam and residual oxygen as coexisting substances in the exit gas. Results of the present study demonstrate that the removal activity of methane by complete combustion was improved dramatically at low temperatures by the application of a DC electric field to the Pd/Ce<small><sub><em>x</em></sub></small>Zr<small><sub>1−<em>x</em></sub></small>O<small><sub>2</sub></small> catalyst system, even under a humid atmosphere. Specifically, 1 wt% Pd/Ce<small><sub>0.25</sub></small>Zr<small><sub>0.75</sub></small>O<small><sub>2</sub></small> showed very higher methane conversion under humid conditions than under dry conditions at 473 K in the presence of an electric field. To elucidate the reaction mechanisms involved in this process of steam adsorption, we conducted partial pressure dependence tests and activity tests with steam under an electric field.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cy00699b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The elimination of unburned methane produced by internal combustion engines is extremely important because of the strong greenhouse effect of methane. Difficulties in controlling unburned methane arise from its characteristics, such as its difficulty of adsorption, low exhaust gas temperatures in an efficient engine, low concentrations of unburned emitted methane, and the coexistence of steam and residual oxygen as coexisting substances in the exit gas. Results of the present study demonstrate that the removal activity of methane by complete combustion was improved dramatically at low temperatures by the application of a DC electric field to the Pd/CexZr1−xO2 catalyst system, even under a humid atmosphere. Specifically, 1 wt% Pd/Ce0.25Zr0.75O2 showed very higher methane conversion under humid conditions than under dry conditions at 473 K in the presence of an electric field. To elucidate the reaction mechanisms involved in this process of steam adsorption, we conducted partial pressure dependence tests and activity tests with steam under an electric field.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.