Flexible use of conserved motif vocabularies constrains genome access in cell type evolution

Chew Chai, Jesse Gibson, Pengyang Li, Anusri Pampari, Aman Patel, Anshul Kundaje, Bo Wang
{"title":"Flexible use of conserved motif vocabularies constrains genome access in cell type evolution","authors":"Chew Chai, Jesse Gibson, Pengyang Li, Anusri Pampari, Aman Patel, Anshul Kundaje, Bo Wang","doi":"10.1101/2024.09.03.611027","DOIUrl":null,"url":null,"abstract":"Cell types evolve into a hierarchy with related types grouped into families. How cell type diversification is constrained by the stable separation between families over vast evolutionary times remains unknown. Here, integrating single-nucleus multiomic sequencing and deep learning, we show that hundreds of sequence features (motifs) divide into distinct sets associated with accessible genomes of specific cell type families. This division is conserved across highly divergent, early-branching animals including flatworms and cnidarians. While specific interactions between motifs delineate cell type relationships within families, surprisingly, these interactions are not conserved between species. Consistently, while deep learning models trained on one species can predict accessibility of other species' sequences, their predictions frequently rely on distinct, but synonymous, motif combinations. We propose that long-term stability of cell type families is maintained through genome access specified by conserved motif sets, or 'vocabularies', whereas cell types diversify through flexible use of motifs within each set.","PeriodicalId":501183,"journal":{"name":"bioRxiv - Evolutionary Biology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Evolutionary Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.03.611027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cell types evolve into a hierarchy with related types grouped into families. How cell type diversification is constrained by the stable separation between families over vast evolutionary times remains unknown. Here, integrating single-nucleus multiomic sequencing and deep learning, we show that hundreds of sequence features (motifs) divide into distinct sets associated with accessible genomes of specific cell type families. This division is conserved across highly divergent, early-branching animals including flatworms and cnidarians. While specific interactions between motifs delineate cell type relationships within families, surprisingly, these interactions are not conserved between species. Consistently, while deep learning models trained on one species can predict accessibility of other species' sequences, their predictions frequently rely on distinct, but synonymous, motif combinations. We propose that long-term stability of cell type families is maintained through genome access specified by conserved motif sets, or 'vocabularies', whereas cell types diversify through flexible use of motifs within each set.
灵活使用保守主题词表限制细胞类型进化中的基因组访问
细胞类型演化成一个层次结构,相关类型被归入科。在漫长的进化过程中,细胞类型的多样化如何受到科之间稳定分离的制约,目前仍是未知数。在这里,通过整合单核多组测序和深度学习,我们表明,数百个序列特征(图案)分成与特定细胞类型家族的可访问基因组相关的不同集合。这种划分在包括扁形虫和刺胞动物在内的高度分化的早期分支动物中是一致的。虽然图案之间的特定交互作用勾勒出了细胞类型家族内部的关系,但令人惊讶的是,这些交互作用在物种之间并不一致。一致的是,虽然在一个物种上训练的深度学习模型可以预测其他物种序列的可及性,但它们的预测经常依赖于不同但同义的图案组合。我们提出,细胞类型家族的长期稳定性是通过基因组访问由保守的主题集或 "词汇表 "指定来维持的,而细胞类型则是通过灵活使用每个主题集内的主题来实现多样化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信