Dipole polarization-driven spatial charge separation in defective zinc cadmium sulfoselenide for boosting photocatalytic hydrogen evolution

Qingzheng Tian, Li Wang, Weiwei Sun, Alan Meng, Lina Yang, Zhenjiang Li
{"title":"Dipole polarization-driven spatial charge separation in defective zinc cadmium sulfoselenide for boosting photocatalytic hydrogen evolution","authors":"Qingzheng Tian, Li Wang, Weiwei Sun, Alan Meng, Lina Yang, Zhenjiang Li","doi":"10.1016/j.apcatb.2024.124516","DOIUrl":null,"url":null,"abstract":"The industrial interest of ZnCdS as the photocatalytic media for hydrogen evolution reaction (HER) is severely hindered by its sluggish interfacial charge transfer, limited active sites, and serious photocorrosions. Herein, to catalyze more efficient and robust HER, a series of Se-doped ZnCdS with sulfur vacancies (denoted as Se/V-ZnCdS) are ingeniously designed and facilely synthesized. Experimental and theoretical studies reveal that by inducing dipole polarization through defect engineering synergistic elemental doping, spontaneous polarization field is generated in the bulk phase of ZnCdS, which together with elevated Fermi level renders the Se/V-ZnCdS with desirable spatial charge separation and transfer. Thus, the optimal 0.6 %Se/V-ZnCdS exhibits the outstanding performance of 85.3 mmol·g·h and excellent stability up to 24 h. This work highlights the high efficiency of dipole polarization realized by vacancy synergistic atomic doping in optimizing HER kinetics, and provides a new pathway to develop robust photocatalysts based on metal sulfoselenide for water-splitting reactions.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The industrial interest of ZnCdS as the photocatalytic media for hydrogen evolution reaction (HER) is severely hindered by its sluggish interfacial charge transfer, limited active sites, and serious photocorrosions. Herein, to catalyze more efficient and robust HER, a series of Se-doped ZnCdS with sulfur vacancies (denoted as Se/V-ZnCdS) are ingeniously designed and facilely synthesized. Experimental and theoretical studies reveal that by inducing dipole polarization through defect engineering synergistic elemental doping, spontaneous polarization field is generated in the bulk phase of ZnCdS, which together with elevated Fermi level renders the Se/V-ZnCdS with desirable spatial charge separation and transfer. Thus, the optimal 0.6 %Se/V-ZnCdS exhibits the outstanding performance of 85.3 mmol·g·h and excellent stability up to 24 h. This work highlights the high efficiency of dipole polarization realized by vacancy synergistic atomic doping in optimizing HER kinetics, and provides a new pathway to develop robust photocatalysts based on metal sulfoselenide for water-splitting reactions.
在有缺陷的硫硒化锌镉中实现偶极子极化驱动的空间电荷分离,促进光催化氢气进化
ZnCdS 作为氢进化反应(HER)的光催化介质,其界面电荷转移迟缓、活性位点有限以及严重的光腐蚀性严重阻碍了其在工业上的应用。为了催化更高效、更稳健的氢进化反应,本文巧妙地设计并简便地合成了一系列掺杂了硫空位的 ZnCdS(简称为 Se/V-ZnCdS)。实验和理论研究表明,通过缺陷工程协同元素掺杂诱导偶极极化,ZnCdS 的体相中产生了自发极化场,再加上费米水平的提高,Se/V-ZnCdS 具有理想的空间电荷分离和转移能力。因此,最佳的 0.6 %Se/V-ZnCdS 表现出 85.3 mmol-g-h 的卓越性能和长达 24 小时的出色稳定性。这项工作凸显了空位协同原子掺杂在优化 HER 动力学方面所实现的高效偶极极化,并为开发基于金属硒化物的强效光催化剂提供了一条用于水分离反应的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信