Unveiling optimal activity and mechanism of in situ Ni reduction Pr2Ni1-xZnxO4 anode for ammonia solid oxide fuel cells

Fulan Zhong, Xiaofeng Zhao, Huihuang Fang, Yu Luo, Shaorong Wang, Chongqi Chen, Lilong Jiang
{"title":"Unveiling optimal activity and mechanism of in situ Ni reduction Pr2Ni1-xZnxO4 anode for ammonia solid oxide fuel cells","authors":"Fulan Zhong, Xiaofeng Zhao, Huihuang Fang, Yu Luo, Shaorong Wang, Chongqi Chen, Lilong Jiang","doi":"10.1016/j.apcatb.2024.124522","DOIUrl":null,"url":null,"abstract":"Kinetically sluggish ammonia oxidation and interference of H competing with NH active sites will suppress the output performance of direct ammonia solid oxide fuel cell (DA-SOFC). Herein, we select Zn doped into PrNiO as precursor of PrNiZnO (PNZx) that can be destroyed and converted into PrO together with in-situ Ni reduction, realizing the redistribution of elements in reduction atmosphere. Meanwhile, the foreign Zn as a low-valent element is retained in PrO lattice due to the high segregation Gibbs free energy to form Ni/PrZnO, which aggravates the change of Pr and Pr, thus enhancing the oxygen vacancy concentration. The Zn promotes the reduction of Ni and quenches the adsorption capacity of H, alleviating the “hydrogen poisoning” behavior. As a result, the maximum powder density of single cell based on PNZ0.1 supported by YSZ electrolyte is 134 mW·cm at 800 ℃, which is more than twice higher than that of Ni/YSZ. Various characterizations reveal that the NH reaction path is the synergistic occurrence of ammonia decomposition and ammonia oxidation.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kinetically sluggish ammonia oxidation and interference of H competing with NH active sites will suppress the output performance of direct ammonia solid oxide fuel cell (DA-SOFC). Herein, we select Zn doped into PrNiO as precursor of PrNiZnO (PNZx) that can be destroyed and converted into PrO together with in-situ Ni reduction, realizing the redistribution of elements in reduction atmosphere. Meanwhile, the foreign Zn as a low-valent element is retained in PrO lattice due to the high segregation Gibbs free energy to form Ni/PrZnO, which aggravates the change of Pr and Pr, thus enhancing the oxygen vacancy concentration. The Zn promotes the reduction of Ni and quenches the adsorption capacity of H, alleviating the “hydrogen poisoning” behavior. As a result, the maximum powder density of single cell based on PNZ0.1 supported by YSZ electrolyte is 134 mW·cm at 800 ℃, which is more than twice higher than that of Ni/YSZ. Various characterizations reveal that the NH reaction path is the synergistic occurrence of ammonia decomposition and ammonia oxidation.
揭示用于氨固体氧化物燃料电池的原位镍还原 Pr2Ni1-xZnxO4 阳极的最佳活性和机理
氨氧化动力学缓慢以及 H 与 NH 活性位点竞争的干扰会抑制直接氨固体氧化物燃料电池(DA-SOFC)的输出性能。在此,我们选择在 PrNiO 中掺入 Zn 作为 PrNiZnO(PNZx)的前驱体,该前驱体可在原位还原 Ni 的同时被破坏并转化为 PrO,实现还原气氛中元素的再分配。同时,外来的 Zn 作为一种低价元素,由于偏析吉布斯自由能较高而被保留在 PrO 晶格中,形成 Ni/PrZnO,加剧了 Pr 和 Pr 的变化,从而提高了氧空位浓度。Zn 促进了 Ni 的还原,淬灭了 H 的吸附能力,减轻了 "氢中毒 "行为。因此,基于 PNZ0.1 并由 YSZ 电解质支撑的单电池在 800 ℃ 时的最大粉末密度为 134 mW-cm,比 Ni/YSZ 高出两倍多。各种表征显示,NH 反应路径是氨分解和氨氧化的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信