Shannon J McMahon, Philip L Munday, Jennifer M Donelson
{"title":"The effects of marine heatwaves on a coral reef snapper: insights into aerobic and anaerobic physiology and recovery","authors":"Shannon J McMahon, Philip L Munday, Jennifer M Donelson","doi":"10.1093/conphys/coae060","DOIUrl":null,"url":null,"abstract":"Marine heatwaves (MHWs) are increasing in frequency and intensity. Coral reefs are particularly susceptible to MHWs, which cause mass coral bleaching and mortality. However, little is known about how MHWs affect coral reef fishes. Here, we investigated how MHWs affect the physiology of a coral reef mesopredator, Lutjanus carponotatus. Specifically, we exposed mature adults to two different MHW intensities, +1°C (29.5°C) and + 2°C (30.5°C) and measured physiological performance at 2 and 4 weeks of exposure and at 2 weeks post-exposure. At these time points, we measured oxygen consumption at rest and after a simulated fishing capture event, recovery time, excess post-exercise oxygen consumption (EPOC) and associated biochemical markers in the blood (baseline lactate, post-capture lactate, glucose, haemoglobin levels and haematocrit proportion). We found that 2 weeks of exposure to MHW conditions increased resting oxygen consumption (+1°C = 23%, +2°C = 37%), recovery time (+1°C = 62%, +2°C = 77%), EPOC (+1°C = 50%, +2°C = 68%), baseline lactate (+1°C = 27%, +2°C = 28%), post-capture lactate (+1°C = 62%, +2°C = 109%) and haemoglobin levels (+1°C = 13%, +2°C = 28%). This pattern was maintained at 4 weeks of exposure except for post-capture lactate which was reduced (+1°C = −37%, +2°C = 27%). In combination, these results suggest a greater reliance on anaerobic glycolysis to maintain homeostasis in MHW conditions. At 2 weeks post-exposure, when compared to control fish, we found that capture oxygen consumption was increased (+1°C = 25%, +2°C = 26%), recovery rate was increased (+2°C = 38%) and haemoglobin was still higher (+1°C = 15%, +2°C = 21%). These results show that MHW conditions have direct physiological demands on adult coral reef snapper and ecologically relevant residual effects can last for at least 2 weeks post-MHW; however, individuals appear to recover from the negative effects experienced during the MHW. This provides new insight into the effects of MHWs on the physiological performance of coral reef fishes.","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"6 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coae060","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Marine heatwaves (MHWs) are increasing in frequency and intensity. Coral reefs are particularly susceptible to MHWs, which cause mass coral bleaching and mortality. However, little is known about how MHWs affect coral reef fishes. Here, we investigated how MHWs affect the physiology of a coral reef mesopredator, Lutjanus carponotatus. Specifically, we exposed mature adults to two different MHW intensities, +1°C (29.5°C) and + 2°C (30.5°C) and measured physiological performance at 2 and 4 weeks of exposure and at 2 weeks post-exposure. At these time points, we measured oxygen consumption at rest and after a simulated fishing capture event, recovery time, excess post-exercise oxygen consumption (EPOC) and associated biochemical markers in the blood (baseline lactate, post-capture lactate, glucose, haemoglobin levels and haematocrit proportion). We found that 2 weeks of exposure to MHW conditions increased resting oxygen consumption (+1°C = 23%, +2°C = 37%), recovery time (+1°C = 62%, +2°C = 77%), EPOC (+1°C = 50%, +2°C = 68%), baseline lactate (+1°C = 27%, +2°C = 28%), post-capture lactate (+1°C = 62%, +2°C = 109%) and haemoglobin levels (+1°C = 13%, +2°C = 28%). This pattern was maintained at 4 weeks of exposure except for post-capture lactate which was reduced (+1°C = −37%, +2°C = 27%). In combination, these results suggest a greater reliance on anaerobic glycolysis to maintain homeostasis in MHW conditions. At 2 weeks post-exposure, when compared to control fish, we found that capture oxygen consumption was increased (+1°C = 25%, +2°C = 26%), recovery rate was increased (+2°C = 38%) and haemoglobin was still higher (+1°C = 15%, +2°C = 21%). These results show that MHW conditions have direct physiological demands on adult coral reef snapper and ecologically relevant residual effects can last for at least 2 weeks post-MHW; however, individuals appear to recover from the negative effects experienced during the MHW. This provides new insight into the effects of MHWs on the physiological performance of coral reef fishes.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.