Tip-intensified engineering of interfacial microenvironment toward pH-universal hydrogen evolution reaction

Youmei Kong, Wei Yang, Jingjing Bao, Licheng Sun, Yang Qiu, Yu Chen, Qiang Zhao, Min Du, Zhengyu Mo
{"title":"Tip-intensified engineering of interfacial microenvironment toward pH-universal hydrogen evolution reaction","authors":"Youmei Kong, Wei Yang, Jingjing Bao, Licheng Sun, Yang Qiu, Yu Chen, Qiang Zhao, Min Du, Zhengyu Mo","doi":"10.1016/j.apcatb.2024.124512","DOIUrl":null,"url":null,"abstract":"Engineering a robust non-platinum electrode toward hydrogen evolution reaction (HER) is important for water electrolysis. Here we develop a nanotip-structured electrode through a solution phase etching procedure. Based on the experimental and finite element simulation, the results show that the nanotip-structured design of electrodes cannot only lower the adhesion force of bubbles, but also induce a local-concentrated electric field that can promote the formation of Marangoni effect, and K concentrated and local acid-like microenvironment, consequently facilitating the detachment of bubbles and the HER kinetics. The electrochemical measurements and density function theory (DFT) calculation indicate that the constructed electrode exhibits a low H* binding energy and an outstanding HER performance that outperforms the commercial Pt/C in pH-universal medium. Overall, this work provides a feasible strategy for electrode design with a pH-universal feasibility by precisely constructing electrode interfaces.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering a robust non-platinum electrode toward hydrogen evolution reaction (HER) is important for water electrolysis. Here we develop a nanotip-structured electrode through a solution phase etching procedure. Based on the experimental and finite element simulation, the results show that the nanotip-structured design of electrodes cannot only lower the adhesion force of bubbles, but also induce a local-concentrated electric field that can promote the formation of Marangoni effect, and K concentrated and local acid-like microenvironment, consequently facilitating the detachment of bubbles and the HER kinetics. The electrochemical measurements and density function theory (DFT) calculation indicate that the constructed electrode exhibits a low H* binding energy and an outstanding HER performance that outperforms the commercial Pt/C in pH-universal medium. Overall, this work provides a feasible strategy for electrode design with a pH-universal feasibility by precisely constructing electrode interfaces.
尖端强化界面微环境工程,实现 pH 值通用氢进化反应
设计一种坚固耐用的非铂电极以实现氢进化反应(HER)对于电解水非常重要。在这里,我们通过溶液相蚀刻程序开发了一种纳米尖端结构电极。基于实验和有限元模拟的结果表明,纳米尖端结构的电极设计不仅能降低气泡的粘附力,还能诱导局部集中的电场,促进马兰戈尼效应的形成,以及 K 浓度和局部酸样微环境的形成,从而促进气泡的脱落和 HER 动力学的产生。电化学测量和密度函数理论(DFT)计算表明,所构建的电极具有较低的 H* 结合能和出色的 HER 性能,在 pH 值通用介质中优于商用 Pt/C。总之,这项研究通过精确构建电极界面,为具有 pH 通用性的电极设计提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信