A universal molecular oxygen-mediated photocatalysis strategy to boost visible-light induced hydrogen evolution through partial water splitting

Nan Lu, Xiaoqing Yan, Biling Wu, Hisayoshi Kobayashi, Renhong Li
{"title":"A universal molecular oxygen-mediated photocatalysis strategy to boost visible-light induced hydrogen evolution through partial water splitting","authors":"Nan Lu, Xiaoqing Yan, Biling Wu, Hisayoshi Kobayashi, Renhong Li","doi":"10.1016/j.apcatb.2024.124536","DOIUrl":null,"url":null,"abstract":"A universal oxygen-mediated, stepwise strategy is proposed for efficiently inducing visible-light photocatalytic partial water decomposition into hydrogen over various semiconductor photocatalysts with conduction band bottoms below the single-electron oxygen reduction potential. In this scenario, molecular O can be transformed into reactive oxygen species, serving as both an oxidant and a homogeneous catalyst for producing hydrogen from alkaline aqueous solution containing various organic substrates. Further enhancement the performance is achieved by doping with phosphorous and oxygen, which constructs a local internal electric field and introduces sulfur vacancies, thereby facilitating the transport of photogenerated charge carriers, particularly on a representative CdS photocatalyst. The optimal hydrogen evolution performance reaches 2321.4 and 8521.4 μmol·g·h in methanol and formaldehyde solution systems, respectively, with an apparent quantum efficiency exceeding 59.4 % under 450 nm visible light irradiation. Mechanistic studies demonstrate that the oxygen-mediated, sequential single-electron transfer process can occur with virtually zero activation energy.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A universal oxygen-mediated, stepwise strategy is proposed for efficiently inducing visible-light photocatalytic partial water decomposition into hydrogen over various semiconductor photocatalysts with conduction band bottoms below the single-electron oxygen reduction potential. In this scenario, molecular O can be transformed into reactive oxygen species, serving as both an oxidant and a homogeneous catalyst for producing hydrogen from alkaline aqueous solution containing various organic substrates. Further enhancement the performance is achieved by doping with phosphorous and oxygen, which constructs a local internal electric field and introduces sulfur vacancies, thereby facilitating the transport of photogenerated charge carriers, particularly on a representative CdS photocatalyst. The optimal hydrogen evolution performance reaches 2321.4 and 8521.4 μmol·g·h in methanol and formaldehyde solution systems, respectively, with an apparent quantum efficiency exceeding 59.4 % under 450 nm visible light irradiation. Mechanistic studies demonstrate that the oxygen-mediated, sequential single-electron transfer process can occur with virtually zero activation energy.
以分子氧为媒介的通用光催化策略,通过部分水分裂促进可见光诱导的氢进化
本文提出了一种以氧为媒介的通用分步策略,可在导带底低于单电子氧还原电位的各种半导体光催化剂上有效地诱导可见光光催化部分水分解成氢。在这种情况下,分子 O 可以转化为活性氧,既可作为氧化剂,也可作为均相催化剂,从含有各种有机基质的碱性水溶液中产生氢气。通过掺杂磷和氧,可以构建局部内电场并引入硫空位,从而促进光生电荷载流子的传输,特别是在具有代表性的 CdS 光催化剂上,从而进一步提高性能。在 450 纳米可见光照射下,该催化剂在甲醇和甲醛溶液体系中的最佳氢气进化性能分别达到 2321.4 和 8521.4 μmol-g-h,表观量子效率超过 59.4%。机理研究表明,氧介导的顺序单电子转移过程可以在活化能几乎为零的情况下发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信