{"title":"LLMs for knowledge graph construction and reasoning: recent capabilities and future opportunities","authors":"Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao, Yixin Ou, Yunzhi Yao, Shumin Deng, Huajun Chen, Ningyu Zhang","doi":"10.1007/s11280-024-01297-w","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We engage in experiments across eight diverse datasets, focusing on four representative tasks encompassing entity and relation extraction, event extraction, link prediction, and question-answering, thereby thoroughly exploring LLMs’ performance in the domain of construction and inference. Empirically, our findings suggest that LLMs, represented by GPT-4, are more suited as inference assistants rather than few-shot information extractors. Specifically, while GPT-4 exhibits good performance in tasks related to KG construction, it excels further in reasoning tasks, surpassing fine-tuned models in certain cases. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, leading to the proposition of a Virtual Knowledge Extraction task and the development of the corresponding VINE dataset. Based on these empirical findings, we further propose <b>AutoKG</b>, a multi-agent-based approach employing LLMs and external sources for KG construction and reasoning. We anticipate that this research can provide invaluable insights for future undertakings in the field of knowledge graphs.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01297-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We engage in experiments across eight diverse datasets, focusing on four representative tasks encompassing entity and relation extraction, event extraction, link prediction, and question-answering, thereby thoroughly exploring LLMs’ performance in the domain of construction and inference. Empirically, our findings suggest that LLMs, represented by GPT-4, are more suited as inference assistants rather than few-shot information extractors. Specifically, while GPT-4 exhibits good performance in tasks related to KG construction, it excels further in reasoning tasks, surpassing fine-tuned models in certain cases. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, leading to the proposition of a Virtual Knowledge Extraction task and the development of the corresponding VINE dataset. Based on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs and external sources for KG construction and reasoning. We anticipate that this research can provide invaluable insights for future undertakings in the field of knowledge graphs.