Impacts of impeller blade number on centrifugal pump performance under critical cavitation conditions

IF 2.3 4区 工程技术 Q2 ENGINEERING, MECHANICAL
Hayder Kareem Sakran, Mohd Sharizal Abdul Aziz, Mohd Zulkifly Abdullah, Chu Yee Khor, Mohd Remy Rozainy Mohd Arif Zainol
{"title":"Impacts of impeller blade number on centrifugal pump performance under critical cavitation conditions","authors":"Hayder Kareem Sakran, Mohd Sharizal Abdul Aziz, Mohd Zulkifly Abdullah, Chu Yee Khor, Mohd Remy Rozainy Mohd Arif Zainol","doi":"10.1177/09544089241278219","DOIUrl":null,"url":null,"abstract":"The number of impeller blades is a significant geometric parameter that considerably impacts centrifugal pump performance. A transient numerical analysis of a centrifugal pump is conducted to examine the influence of the variable impeller blade number on pump performance under critical cavitation conditions. Six different impellers with 3, 5, 7, 8, 9, and 11 blades are examined numerically at a rotational speed of 2900 r/min when other impeller parameters remain unchanged. Fields of interior flow and properties of centrifugal pumps are studied concerning static pressure, velocity magnitude, and vapor volume fraction using ANSYS Fluent to perform the numerical simulation. The results show that numerical analysis can accurately predict centrifugal pump internal flow. The current results match experimental and numerical data for the NPSH, with a 4.65% discrepancy. Blade numbers affect the flow field and pressure amplitude, especially at the outlet region. As blade numbers increase, pressure increases, and the impeller with 11-blade has the maximum pressure amplitude. The impeller with a seven-blade achieved its highest efficiency level, exhibiting a 0.48% improvement under non-cavitation conditions and a 1.4% improvement under critical cavitation conditions compared to the original model. Furthermore, the cavity size on an individual blade of a model with three-blade is more extensive compared to other models. In addition, the impeller with a nine-blade exhibits the lowest value of the vapor volume percentage. This research analyses the influence of different blade numbers on the performance of centrifugal pumps while operating under critical cavitation conditions. It aims to provide novel insights into the flow characteristics associated with such circumstances.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544089241278219","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The number of impeller blades is a significant geometric parameter that considerably impacts centrifugal pump performance. A transient numerical analysis of a centrifugal pump is conducted to examine the influence of the variable impeller blade number on pump performance under critical cavitation conditions. Six different impellers with 3, 5, 7, 8, 9, and 11 blades are examined numerically at a rotational speed of 2900 r/min when other impeller parameters remain unchanged. Fields of interior flow and properties of centrifugal pumps are studied concerning static pressure, velocity magnitude, and vapor volume fraction using ANSYS Fluent to perform the numerical simulation. The results show that numerical analysis can accurately predict centrifugal pump internal flow. The current results match experimental and numerical data for the NPSH, with a 4.65% discrepancy. Blade numbers affect the flow field and pressure amplitude, especially at the outlet region. As blade numbers increase, pressure increases, and the impeller with 11-blade has the maximum pressure amplitude. The impeller with a seven-blade achieved its highest efficiency level, exhibiting a 0.48% improvement under non-cavitation conditions and a 1.4% improvement under critical cavitation conditions compared to the original model. Furthermore, the cavity size on an individual blade of a model with three-blade is more extensive compared to other models. In addition, the impeller with a nine-blade exhibits the lowest value of the vapor volume percentage. This research analyses the influence of different blade numbers on the performance of centrifugal pumps while operating under critical cavitation conditions. It aims to provide novel insights into the flow characteristics associated with such circumstances.
临界气蚀条件下叶轮叶片数对离心泵性能的影响
叶轮叶片数是一个重要的几何参数,对离心泵的性能有很大影响。本文对离心泵进行了瞬态数值分析,以研究临界气蚀条件下可变叶轮叶片数对泵性能的影响。在转速为 2900 r/min 时,当叶轮的其他参数保持不变时,对叶片数分别为 3、5、7、8、9 和 11 的六种不同叶轮进行了数值分析。使用 ANSYS Fluent 进行数值模拟,研究了离心泵的内部流场和特性,包括静压、速度大小和蒸汽体积分数。结果表明,数值分析可以准确预测离心泵的内部流动。目前的结果与 NPSH 的实验数据和数值数据相吻合,差异为 4.65%。叶片数会影响流场和压力幅值,尤其是在出口区域。随着叶片数的增加,压力也随之增加,11 片叶片的叶轮压力幅值最大。七叶片叶轮的效率最高,与原始模型相比,在非空化条件下提高了 0.48%,在临界空化条件下提高了 1.4%。此外,与其他模型相比,三叶片模型单个叶片上的空腔尺寸更大。此外,九叶片叶轮的蒸汽体积百分比值最低。本研究分析了不同叶片数对离心泵在临界汽蚀条件下工作性能的影响。其目的是对与这种情况相关的流动特性提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
16.70%
发文量
370
审稿时长
6 months
期刊介绍: The Journal of Process Mechanical Engineering publishes high-quality, peer-reviewed papers covering a broad area of mechanical engineering activities associated with the design and operation of process equipment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信