Monitoring sedimentation of magnetorheological fluids using an infrared night vision wide-angle lens visual monitoring system with dynamic calibration method

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shiwei Chen, Jie Yang, Pan Jiang, Yang He, Honghui Zhang
{"title":"Monitoring sedimentation of magnetorheological fluids using an infrared night vision wide-angle lens visual monitoring system with dynamic calibration method","authors":"Shiwei Chen, Jie Yang, Pan Jiang, Yang He, Honghui Zhang","doi":"10.1177/1045389x241271940","DOIUrl":null,"url":null,"abstract":"Magnetorheological fluids (MRFs) have demonstrated remarkable potential in engineering vibration damping. Nonetheless, the substantial density difference between the dispersed phase and the dispersing medium causes inevitable sedimentation in MRFs, significantly affecting the material’s service life and restricting its engineering applications. Monitoring technology for MRF sedimentation plays a crucial role in comprehending sedimentation behavior and holds significant importance for the subsequent redispersion of MRFs. Consequently, the monitoring technology for MRFs has been gaining increasing attention in recent times. This study proposes a machine vision-based real-time and in situ monitoring method to test and evaluate the suspension stability of MRFs. Firstly, an infrared wide-angle night vision lens (IWNVL) is fixed at the side of a MRF column for capturing the sequential MRF images during its sediment process. Then, the gray values (GVs) could be obtained by utilizing Gaussian filtering and morphological filtering. Secondly, by combining the Kynch sedimentation theory and Lambert-Beer composite material optical transmission theory, an analytic model is established in this works to find the relationship between the MRFs’ concentration gradient to its GVs. In what follows, the concentration distribution varied with time could be tested by the GVs of the sequential MRF images. Finally, a sentimental experiment for prepared MRF column is carried out in this works, and the testing results are verified and discussed by a capacitance sensor and a simple visual observation. The experimental results demonstrate that the proposed method could accurately measure the concentration distribution during MRFs’ sedimentation process under different initial light intensities.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241271940","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetorheological fluids (MRFs) have demonstrated remarkable potential in engineering vibration damping. Nonetheless, the substantial density difference between the dispersed phase and the dispersing medium causes inevitable sedimentation in MRFs, significantly affecting the material’s service life and restricting its engineering applications. Monitoring technology for MRF sedimentation plays a crucial role in comprehending sedimentation behavior and holds significant importance for the subsequent redispersion of MRFs. Consequently, the monitoring technology for MRFs has been gaining increasing attention in recent times. This study proposes a machine vision-based real-time and in situ monitoring method to test and evaluate the suspension stability of MRFs. Firstly, an infrared wide-angle night vision lens (IWNVL) is fixed at the side of a MRF column for capturing the sequential MRF images during its sediment process. Then, the gray values (GVs) could be obtained by utilizing Gaussian filtering and morphological filtering. Secondly, by combining the Kynch sedimentation theory and Lambert-Beer composite material optical transmission theory, an analytic model is established in this works to find the relationship between the MRFs’ concentration gradient to its GVs. In what follows, the concentration distribution varied with time could be tested by the GVs of the sequential MRF images. Finally, a sentimental experiment for prepared MRF column is carried out in this works, and the testing results are verified and discussed by a capacitance sensor and a simple visual observation. The experimental results demonstrate that the proposed method could accurately measure the concentration distribution during MRFs’ sedimentation process under different initial light intensities.
利用带动态校准方法的红外夜视广角镜头视觉监测系统监测磁流变液的沉积情况
磁流变流体(MRF)在工程减震方面展现出了巨大的潜力。然而,分散相与分散介质之间的巨大密度差会导致磁流变流体不可避免地发生沉积,从而严重影响材料的使用寿命并限制其工程应用。MRF 沉积监测技术在理解沉积行为方面起着至关重要的作用,并对 MRF 的后续再分散具有重要意义。因此,近年来 MRF 的监测技术越来越受到重视。本研究提出了一种基于机器视觉的实时原位监测方法,用于测试和评估 MRF 的悬浮稳定性。首先,在 MRF 柱的侧面固定一个红外广角夜视镜头(IWNVL),用于捕捉 MRF 在沉积过程中的连续图像。然后,利用高斯滤波和形态滤波获得灰度值(GV)。其次,结合 Kynch 沉积理论和 Lambert-Beer 复合材料光学透射理论,本作品建立了一个分析模型,以找出 MRF 的浓度梯度与其灰度值之间的关系。接下来,可以通过连续 MRF 图像的 GV 检验随时间变化的浓度分布。最后,本文对制备的 MRF 柱进行了实验,并通过电容传感器和简单的视觉观察对测试结果进行了验证和讨论。实验结果表明,所提出的方法可以准确测量不同初始光强下 MRF 沉积过程中的浓度分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信