Sylvia Vassileva, Georgi Grazhdanski, Ivan Koychev, Svetla Boytcheva
{"title":"Transformer-based approach for symptom recognition and multilingual linking","authors":"Sylvia Vassileva, Georgi Grazhdanski, Ivan Koychev, Svetla Boytcheva","doi":"10.1093/database/baae090","DOIUrl":null,"url":null,"abstract":"This paper presents a transformer-based approach for symptom Named Entity Recognition (NER) in Spanish clinical texts and multilingual entity linking on the SympTEMIST dataset. For Spanish NER, we fine tune a RoBERTa-based token-level classifier with Bidirectional Long Short-Term Memory and conditional random field layers on an augmented train set, achieving an F1 score of 0.73. Entity linking is performed via a hybrid approach with dictionaries, generating candidates from a knowledge base containing Unified Medical Language System aliases using the cross-lingual SapBERT and reranking the top candidates using GPT-3.5. The entity linking approach shows consistent results for multiple languages of 0.73 accuracy on the SympTEMIST multilingual dataset and also achieves an accuracy of 0.6123 on the Spanish entity linking task surpassing the current top score for this subtask. Database URL: https://github.com/svassileva/symptemist-multilingual-linking","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"69 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae090","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a transformer-based approach for symptom Named Entity Recognition (NER) in Spanish clinical texts and multilingual entity linking on the SympTEMIST dataset. For Spanish NER, we fine tune a RoBERTa-based token-level classifier with Bidirectional Long Short-Term Memory and conditional random field layers on an augmented train set, achieving an F1 score of 0.73. Entity linking is performed via a hybrid approach with dictionaries, generating candidates from a knowledge base containing Unified Medical Language System aliases using the cross-lingual SapBERT and reranking the top candidates using GPT-3.5. The entity linking approach shows consistent results for multiple languages of 0.73 accuracy on the SympTEMIST multilingual dataset and also achieves an accuracy of 0.6123 on the Spanish entity linking task surpassing the current top score for this subtask. Database URL: https://github.com/svassileva/symptemist-multilingual-linking
期刊介绍:
Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data.
Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.