Vaibhav K. Kashte, Nilkanth N. Kapse, Vishal Ashok Pandit, Bhagwan G. Toksha
{"title":"A Review on Graphene Oxide-Based Ferrite Nanocomposites for Catalytic Applications","authors":"Vaibhav K. Kashte, Nilkanth N. Kapse, Vishal Ashok Pandit, Bhagwan G. Toksha","doi":"10.1007/s10563-024-09434-1","DOIUrl":null,"url":null,"abstract":"<div><p>This review discusses the synthesis, characterization, catalytic applications, mechanisms, current advances, challenges, and environmental consequences of Graphene oxide-based ferrite nanocomposites. The synthesis described the strategies used to synthesize these nanocomposites. The structural characterization was discussed using XRD, FTIR, and Raman spectroscopy techniques and how it could learn about their chemical composition and bonding. Morphological characterization said the results obtained on the nanostructure of these nanocomposites. The catalytic application phase is concerned with their use in photocatalysis, electrocatalysis, and magnetic catalysis, as well as the synergistic impact and the extra suitable electron switch pathways. The assessment also highlighted emerging developments in synthesis, novel catalytic applications, and capacity applications. The challenges and destiny directions discussed the importance of particular synthesis, management, balance, enhancement, and scalability. Compared to the sustainability, economic viability, and ecological effect, the environmental and monetary issues section underlined the significance of environmentally pleasant manufacturing and massive-scale viability.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"375 - 391"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-024-09434-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review discusses the synthesis, characterization, catalytic applications, mechanisms, current advances, challenges, and environmental consequences of Graphene oxide-based ferrite nanocomposites. The synthesis described the strategies used to synthesize these nanocomposites. The structural characterization was discussed using XRD, FTIR, and Raman spectroscopy techniques and how it could learn about their chemical composition and bonding. Morphological characterization said the results obtained on the nanostructure of these nanocomposites. The catalytic application phase is concerned with their use in photocatalysis, electrocatalysis, and magnetic catalysis, as well as the synergistic impact and the extra suitable electron switch pathways. The assessment also highlighted emerging developments in synthesis, novel catalytic applications, and capacity applications. The challenges and destiny directions discussed the importance of particular synthesis, management, balance, enhancement, and scalability. Compared to the sustainability, economic viability, and ecological effect, the environmental and monetary issues section underlined the significance of environmentally pleasant manufacturing and massive-scale viability.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.