Impact of oxygen fugacity on atmospheric structure and emission spectra of ultra hot rocky exoplanets

Fabian L. Seidler, Paolo A. Sossi, Simon L. Grimm
{"title":"Impact of oxygen fugacity on atmospheric structure and emission spectra of ultra hot rocky exoplanets","authors":"Fabian L. Seidler, Paolo A. Sossi, Simon L. Grimm","doi":"arxiv-2408.16548","DOIUrl":null,"url":null,"abstract":"Atmospheres above lava-ocean planets (LOPs) hold clues as to the properties\nof their interiors, owing to the expectation that the two reservoirs are in\nchemical equilibrium. Here we consider `mineral' atmospheres produced in\nequilibrium with silicate liquids. We treat oxygen fugacity ($f$O$_2$) as an\nindependent variable, together with temperature ($T$) and composition ($X$), to\ncompute equilibrium partial pressures ($p$) of stable gas species at the\nliquid-gas interface. Above this boundary, the atmospheric speciation and the\npressure-temperature structure are computed self-consistently to yield emission\nspectra. We explore a wide array of plausible compositions, oxygen fugacities\n(between 6 log$_{10}$ units below- and above the iron-w\\\"ustite buffer, IW) and\nirradiation temperatures (2000, 2500, 3000 and 3500 K) relevant to LOPs. We\nfind that SiO(g), Fe(g) and Mg(g) are the major species below $\\sim$IW, ceding\nto O$_2$(g) and O(g) in more oxidised atmospheres. The transition between the\ntwo regimes demarcates a minimum in total pressure ($P$). Because $p$ scales\nlinearly with $X$, emission spectra are only modest functions of composition.\nBy contrast, $f$O$_2$ can vary over orders of magnitude, thus causing\ncommensurate changes in $p$. Reducing atmospheres show intense SiO emission,\ncreating a temperature inversion in the upper atmosphere. Conversely, oxidised\natmospheres have lower $p$SiO and lack thermal inversions, with resulting\nemission spectra that mimic that of a black body. Consequently, the intensity\nof SiO emission relative to the background, generated by MgO(g), can be used to\nquantify the $f$O$_2$ of the atmosphere. Depending on the emission spectroscopy\nmetric of the target, deriving the $f$O$_2$ of known nearby LOPs is possible\nwith a few secondary occultations observed by JWST.","PeriodicalId":501209,"journal":{"name":"arXiv - PHYS - Earth and Planetary Astrophysics","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheres above lava-ocean planets (LOPs) hold clues as to the properties of their interiors, owing to the expectation that the two reservoirs are in chemical equilibrium. Here we consider `mineral' atmospheres produced in equilibrium with silicate liquids. We treat oxygen fugacity ($f$O$_2$) as an independent variable, together with temperature ($T$) and composition ($X$), to compute equilibrium partial pressures ($p$) of stable gas species at the liquid-gas interface. Above this boundary, the atmospheric speciation and the pressure-temperature structure are computed self-consistently to yield emission spectra. We explore a wide array of plausible compositions, oxygen fugacities (between 6 log$_{10}$ units below- and above the iron-w\"ustite buffer, IW) and irradiation temperatures (2000, 2500, 3000 and 3500 K) relevant to LOPs. We find that SiO(g), Fe(g) and Mg(g) are the major species below $\sim$IW, ceding to O$_2$(g) and O(g) in more oxidised atmospheres. The transition between the two regimes demarcates a minimum in total pressure ($P$). Because $p$ scales linearly with $X$, emission spectra are only modest functions of composition. By contrast, $f$O$_2$ can vary over orders of magnitude, thus causing commensurate changes in $p$. Reducing atmospheres show intense SiO emission, creating a temperature inversion in the upper atmosphere. Conversely, oxidised atmospheres have lower $p$SiO and lack thermal inversions, with resulting emission spectra that mimic that of a black body. Consequently, the intensity of SiO emission relative to the background, generated by MgO(g), can be used to quantify the $f$O$_2$ of the atmosphere. Depending on the emission spectroscopy metric of the target, deriving the $f$O$_2$ of known nearby LOPs is possible with a few secondary occultations observed by JWST.
氧富集度对超热岩质系外行星大气结构和发射光谱的影响
熔岩-海洋行星(LOPs)上面的大气层是了解其内部性质的线索,因为这两个储层是化学平衡的。这里我们考虑的是与硅酸盐液体不平衡产生的 "矿物 "大气。我们把氧富集度($f$O$_2$)作为一个独立变量,与温度($T$)和成分($X$)一起计算液气界面上稳定气体物种的平衡分压($p$)。在这一边界之上,通过自洽计算大气分异和压力-温度结构,得出排放谱。我们探索了与 LOPs 相关的多种可信成分、氧富集度(低于和高于铁氧体缓冲区 IW 的 6 log$_{10}$ 单位之间)和辐照温度(2000、2500、3000 和 3500 K)。我们发现,SiO(g)、Fe(g)和Mg(g)是低于$\sim$IW的主要物种,而在氧化程度更高的大气中,这些物种会逐渐变成O$_2$(g)和O(g)。两种状态之间的过渡是总压($P$)最小值的分界线。相比之下,$f$O$_2$的变化可以超过几个数量级,从而导致$p$的相应变化。还原大气显示出强烈的氧化硅发射,在高层大气中造成温度反转。相反,氧化大气的氧化硅 p 值较低,缺乏热反转,其发射光谱与黑体的发射光谱相似。因此,氧化镁(g)产生的相对于背景的氧化硅发射强度可以用来量化大气中的 $f$O$_2$。根据目标的发射光谱测量结果,利用 JWST 观测到的一些二次掩星,就有可能推导出已知附近低地球轨道的 f$O$_2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信