TriPoD: Tri-Population size distributions for Dust evolution. Coagulation in vertically integrated hydrodynamic simulations of protoplanetary disks

Thomas Pfeil, Til Birnstiel, Hubert Klahr
{"title":"TriPoD: Tri-Population size distributions for Dust evolution. Coagulation in vertically integrated hydrodynamic simulations of protoplanetary disks","authors":"Thomas Pfeil, Til Birnstiel, Hubert Klahr","doi":"arxiv-2409.03816","DOIUrl":null,"url":null,"abstract":"Context. Dust coagulation and fragmentation impact the structure and\nevolution of protoplanetary disks and set the initial conditions for planet\nformation. Dust grains dominate the opacities, they determine the cooling times\nof the gas, they influence the ionization state of the gas, and the grain\nsurface area is an important parameter for the chemistry in protoplanetary\ndisks. Therefore, dust evolution should not be ignored in numerical studies of\nprotoplanetary disks. Available dust coagulation models are, however, too\ncomputationally expensive to be implemented in large-scale hydrodynamic\nsimulations. This limits detailed numerical studies of protoplanetary disks,\nincluding these effects, mostly to one-dimensional models. Aims. We aim to develop a simple - yet accurate - dust coagulation model that\ncan be implemented in hydrodynamic simulations of protoplanetary disks. Our\nmodel shall not significantly increase the computational cost of simulations\nand provide information about the local grain size distribution. Methods. The local dust size distributions are assumed to be truncated power\nlaws. Such distributions can be characterized by two dust fluids (large and\nsmall grains) and a maximum particle size, truncating the power law. We compare\nour model to state-of-the-art dust coagulation simulations and calibrate it to\nachieve a good fit with these sophisticated numerical methods. Results. Running various parameter studies, we achieved a good fit between\nour simplified three-parameter model and DustPy, a state-of-the-art dust\ncoagulation software. Conclusions. We present TriPoD, a sub-grid dust coagulation model for the\nPLUTO code. With TriPoD, we can perform two-dimensional, vertically integrated\ndust coagulation simulations on top of a hydrodynamic simulation. Studying the\ndust distributions in two-dimensional vortices and planet-disk systems is thus\nmade possible.","PeriodicalId":501209,"journal":{"name":"arXiv - PHYS - Earth and Planetary Astrophysics","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Context. Dust coagulation and fragmentation impact the structure and evolution of protoplanetary disks and set the initial conditions for planet formation. Dust grains dominate the opacities, they determine the cooling times of the gas, they influence the ionization state of the gas, and the grain surface area is an important parameter for the chemistry in protoplanetary disks. Therefore, dust evolution should not be ignored in numerical studies of protoplanetary disks. Available dust coagulation models are, however, too computationally expensive to be implemented in large-scale hydrodynamic simulations. This limits detailed numerical studies of protoplanetary disks, including these effects, mostly to one-dimensional models. Aims. We aim to develop a simple - yet accurate - dust coagulation model that can be implemented in hydrodynamic simulations of protoplanetary disks. Our model shall not significantly increase the computational cost of simulations and provide information about the local grain size distribution. Methods. The local dust size distributions are assumed to be truncated power laws. Such distributions can be characterized by two dust fluids (large and small grains) and a maximum particle size, truncating the power law. We compare our model to state-of-the-art dust coagulation simulations and calibrate it to achieve a good fit with these sophisticated numerical methods. Results. Running various parameter studies, we achieved a good fit between our simplified three-parameter model and DustPy, a state-of-the-art dust coagulation software. Conclusions. We present TriPoD, a sub-grid dust coagulation model for the PLUTO code. With TriPoD, we can perform two-dimensional, vertically integrated dust coagulation simulations on top of a hydrodynamic simulation. Studying the dust distributions in two-dimensional vortices and planet-disk systems is thus made possible.
TriPoD:尘埃演化的三种群大小分布。原行星盘垂直整合流体力学模拟中的凝结现象
背景。尘粒的凝结和破碎影响着原行星盘的结构和演变,并为行星的形成设定了初始条件。尘粒主宰着不透明性,决定着气体的冷却时间,影响着气体的电离状态,尘粒表面积是原行星盘化学反应的一个重要参数。因此,在原行星盘的数值研究中不应忽视尘埃的演化。然而,现有的尘埃凝聚模型计算成本太高,无法在大规模流体力学模拟中实施。这就限制了对原行星盘的详细数值研究,包括这些效应的研究,主要局限于一维模型。目的。我们的目标是建立一个简单但精确的尘埃凝结模型,以便在原行星盘的流体动力学模拟中实施。我们的模型不会明显增加模拟的计算成本,并能提供有关局部粒度分布的信息。方法。局部尘埃粒度分布被假定为截断幂律。这种分布可以用两种尘埃流体(大颗粒和小颗粒)和一个最大粒径来描述,截断幂律。我们将我们的模型与最先进的粉尘凝结模拟进行比较,并对其进行校准,使其与这些复杂的数值方法达到良好的拟合。结果。通过各种参数研究,我们的简化三参数模型与最先进的粉尘凝聚软件 DustPy 之间实现了良好的拟合。结论。我们介绍了 TriPoD,一种用于PLUTO 代码的子网格尘凝模型。利用 TriPoD,我们可以在流体力学模拟的基础上进行二维、垂直整合的尘埃凝聚模拟。因此,研究二维漩涡和行星盘系统中的尘埃分布成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信