{"title":"Ultra-stable ionogels based on hydrogen networks with broad temperature, environment, and long-term stability","authors":"Huiyuan Zhang, Tianhong Dong, Cancan Zheng, Hongxing Zhang, Yumin Xia, Yong He","doi":"10.1016/j.mtchem.2024.102275","DOIUrl":null,"url":null,"abstract":"Ionogels with broad temperature, environment, and long-term stability are desirable in intelligent flexible electronics. Herein, we have developed a novel ultra-stable ionogel through hydrogen bonding between the amphiphilic ionic liquid--1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([EMIM][NTf]) and butyl acrylate (BA)-ethyl ethoxyethyl acrylate (EO) copolymer (P(BA-co-EO)). The ionogel demonstrates high decomposition voltage, strong adhesion stability, non-corrosive stability, and cyclic strain sensing stability (500 cycles at 120 % strain). Additionally, it exhibits broad temperature and environment adaptability, capable of stretching up to 7 times at −20 °C, maintaining consistent weight after 30 days of storage in extreme environments such as low/high temperatures (−20∼100 °C), high vacuum (6 × 10 Pa), and underwater (without additional sealed packaging), while also maintaining electrophysiological monitoring at −20 °C or 100 °C. Most importantly, the ionogel without sealing can self-adhere to the human skin for continuous and high-quality electrophysiological monitoring for 1 month under daily life conditions. We have utilized the ionogel to fabricate an ionic skin with multifunctional sensing capabilities for strain, pressure, and temperature, which has been successfully employed in human motion and pressure detection. It is believed that ionogels with long-term stability will pave the way for developing next-generation intelligent flexible electronics in future research endeavors.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"23 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102275","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ionogels with broad temperature, environment, and long-term stability are desirable in intelligent flexible electronics. Herein, we have developed a novel ultra-stable ionogel through hydrogen bonding between the amphiphilic ionic liquid--1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([EMIM][NTf]) and butyl acrylate (BA)-ethyl ethoxyethyl acrylate (EO) copolymer (P(BA-co-EO)). The ionogel demonstrates high decomposition voltage, strong adhesion stability, non-corrosive stability, and cyclic strain sensing stability (500 cycles at 120 % strain). Additionally, it exhibits broad temperature and environment adaptability, capable of stretching up to 7 times at −20 °C, maintaining consistent weight after 30 days of storage in extreme environments such as low/high temperatures (−20∼100 °C), high vacuum (6 × 10 Pa), and underwater (without additional sealed packaging), while also maintaining electrophysiological monitoring at −20 °C or 100 °C. Most importantly, the ionogel without sealing can self-adhere to the human skin for continuous and high-quality electrophysiological monitoring for 1 month under daily life conditions. We have utilized the ionogel to fabricate an ionic skin with multifunctional sensing capabilities for strain, pressure, and temperature, which has been successfully employed in human motion and pressure detection. It is believed that ionogels with long-term stability will pave the way for developing next-generation intelligent flexible electronics in future research endeavors.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.