{"title":"Polycycloalkanes at the Helm: Exploring high energy density eFuel with norbornyl derivatives","authors":"Feng Wang, Delano P. Chong","doi":"10.1016/j.mtchem.2024.102264","DOIUrl":null,"url":null,"abstract":"Sustainable aviation fuel (SAF, eFuel), predominantly composed of polycyclo-hydrocarbons, is a promising alternative to conventional fossil jet fuels. It offers cleaner options for achieving immediate carbon neutrality. This study focuses on norbornyl derivatives containing seven carbon atoms (CH), including norbornadiene (NBD), quadricyclane (QC), norbornene (NBN), [2.2.1]propellane (PPL), and norbornane (NBA). These compounds are components of high energy density (HED) fuels or precursor molecules. Understanding their chemical electronic structures reveals how energy is stored in HED compounds. The carbon nuclear magnetic resonance (C NMR) chemical shifts and C1s core electron binding energy (CEBE) properties were calculated using density functional theory (DFT). The results suggest that saturated C–C single σ-bonds and strained polycycloalkane structures are the primary energy storage mechanisms for these hydrocarbons. This study provides valuable theoretical insights for the development of sustainable HED aviation fuel (eFuel).","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"18 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102264","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainable aviation fuel (SAF, eFuel), predominantly composed of polycyclo-hydrocarbons, is a promising alternative to conventional fossil jet fuels. It offers cleaner options for achieving immediate carbon neutrality. This study focuses on norbornyl derivatives containing seven carbon atoms (CH), including norbornadiene (NBD), quadricyclane (QC), norbornene (NBN), [2.2.1]propellane (PPL), and norbornane (NBA). These compounds are components of high energy density (HED) fuels or precursor molecules. Understanding their chemical electronic structures reveals how energy is stored in HED compounds. The carbon nuclear magnetic resonance (C NMR) chemical shifts and C1s core electron binding energy (CEBE) properties were calculated using density functional theory (DFT). The results suggest that saturated C–C single σ-bonds and strained polycycloalkane structures are the primary energy storage mechanisms for these hydrocarbons. This study provides valuable theoretical insights for the development of sustainable HED aviation fuel (eFuel).
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.