Dynamical behaviours with various analytic solutions to a \((2+1)\) extended Boiti–Leon–Manna–Pempinelli equation

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2024-08-13 DOI:10.1007/s12043-024-02784-5
Shalini Yadav, Aniruddha Kumar Sharma, Rajan Arora
{"title":"Dynamical behaviours with various analytic solutions to a \\((2+1)\\) extended Boiti–Leon–Manna–Pempinelli equation","authors":"Shalini Yadav,&nbsp;Aniruddha Kumar Sharma,&nbsp;Rajan Arora","doi":"10.1007/s12043-024-02784-5","DOIUrl":null,"url":null,"abstract":"<div><p>The study aims at different families of analytical solutions and their dynamics for the (<span>\\(2+1\\)</span>)-dimensional extended Boiti–Leon–Manna–Pempinelli (eBLMP) problem, which is widely used in the fields of physics such as non-linear optics, fluid dynamics, mathematical physics, plasma physics and quantum mechanics. The paper utilises two recently developed efficient mathematical methods: the generalised exponential rational function (GERF) method and the generalised Kudryashov (gK) method. These two methods are versatile, simply applicable to enlighten the new non-linear waveforms. Consequently, these discoveries enhance our understanding of complex systems like (<span>\\(2+1\\)</span>)-dimensional eBLMP in the realm of non-linear science.\n</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"98 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02784-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The study aims at different families of analytical solutions and their dynamics for the (\(2+1\))-dimensional extended Boiti–Leon–Manna–Pempinelli (eBLMP) problem, which is widely used in the fields of physics such as non-linear optics, fluid dynamics, mathematical physics, plasma physics and quantum mechanics. The paper utilises two recently developed efficient mathematical methods: the generalised exponential rational function (GERF) method and the generalised Kudryashov (gK) method. These two methods are versatile, simply applicable to enlighten the new non-linear waveforms. Consequently, these discoveries enhance our understanding of complex systems like (\(2+1\))-dimensional eBLMP in the realm of non-linear science.

Abstract Image

$$(2+1)$$扩展的波蒂-里昂-曼纳-彭皮内利方程的各种解析解的动力学行为
本研究旨在探讨 (\(2+1\))-dimensional extended Boiti-Leon-Manna-Pempinelli (eBLMP) 问题的不同分析解系列及其动力学,该问题广泛应用于非线性光学、流体动力学、数学物理、等离子体物理和量子力学等物理学领域。论文利用了最近开发的两种高效数学方法:广义指数有理函数(GERF)方法和广义库德良肖夫(gK)方法。这两种方法用途广泛,简单适用于揭示新的非线性波形。因此,这些发现增强了我们对非线性科学领域中((2+1))维 eBLMP 等复杂系统的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信