Recovering particle velocity and size distributions in ejecta with photon Doppler velocimetry

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED
J. A. Don Jayamanne, R. Outerovitch, F. Ballanger, J. Bénier, E. Blanco, C. Chauvin, P. Hereil, J. Tailleur, O. Durand, R. Pierrat, R. Carminati, A. Hervouët, P. Gandeboeuf, J.-R. Burie
{"title":"Recovering particle velocity and size distributions in ejecta with photon Doppler velocimetry","authors":"J. A. Don Jayamanne, R. Outerovitch, F. Ballanger, J. Bénier, E. Blanco, C. Chauvin, P. Hereil, J. Tailleur, O. Durand, R. Pierrat, R. Carminati, A. Hervouët, P. Gandeboeuf, J.-R. Burie","doi":"10.1063/5.0220642","DOIUrl":null,"url":null,"abstract":"When a solid metal is struck, its free surface can eject fast and fine particles. Despite the many diagnostics that have been implemented to measure the mass, size, velocity, or temperature of ejecta, these efforts provide only a partial picture of this phenomenon. Ejecta characterization, especially in constrained geometries, is an inherently ill-posed problem. In this context, Photon Doppler Velocimetry (PDV) has been a valuable diagnostic, measuring reliably particles and free surface velocities in the single scattering regime. Here, we present ejecta experiments in gas and how, in this context, PDV allows one to retrieve additional information on the ejecta, i.e., information on the particles’ size. We explain what governs ejecta transport in gas and how it can be simulated. To account for the multiple scattering of light in these ejecta, we use the Radiative Transfer Equation (RTE) that quantitatively describes PDV spectrograms, and their dependence not only on the velocity but also on the size distribution of the ejecta. We remind how spectrograms can be simulated by solving numerically this RTE and we show how to do so on hydrodynamic ejecta simulation results. Finally, we use this complex machinery in different ejecta transport scenarios to simulate the corresponding spectrograms. Comparing these to experimental results, we iteratively constrain the ejecta description at an unprecedented level. This work demonstrates our ability to recover particle size information from what is initially a velocity diagnostic, but more importantly it shows how, using existing simulation of ejecta, we capture through simulation the complexity of experimental spectrograms.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"18 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0220642","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

When a solid metal is struck, its free surface can eject fast and fine particles. Despite the many diagnostics that have been implemented to measure the mass, size, velocity, or temperature of ejecta, these efforts provide only a partial picture of this phenomenon. Ejecta characterization, especially in constrained geometries, is an inherently ill-posed problem. In this context, Photon Doppler Velocimetry (PDV) has been a valuable diagnostic, measuring reliably particles and free surface velocities in the single scattering regime. Here, we present ejecta experiments in gas and how, in this context, PDV allows one to retrieve additional information on the ejecta, i.e., information on the particles’ size. We explain what governs ejecta transport in gas and how it can be simulated. To account for the multiple scattering of light in these ejecta, we use the Radiative Transfer Equation (RTE) that quantitatively describes PDV spectrograms, and their dependence not only on the velocity but also on the size distribution of the ejecta. We remind how spectrograms can be simulated by solving numerically this RTE and we show how to do so on hydrodynamic ejecta simulation results. Finally, we use this complex machinery in different ejecta transport scenarios to simulate the corresponding spectrograms. Comparing these to experimental results, we iteratively constrain the ejecta description at an unprecedented level. This work demonstrates our ability to recover particle size information from what is initially a velocity diagnostic, but more importantly it shows how, using existing simulation of ejecta, we capture through simulation the complexity of experimental spectrograms.
用光子多普勒速度测量法复原喷出岩中的粒子速度和大小分布
当固体金属受到冲击时,其自由表面会喷射出快速而细小的颗粒。尽管已经采用了许多诊断方法来测量喷出物的质量、尺寸、速度或温度,但这些工作只能提供这一现象的部分图像。喷出物的特征描述,尤其是在受限几何条件下的特征描述,本质上是一个难以解决的问题。在这种情况下,光子多普勒测速仪(PDV)一直是一种有价值的诊断方法,它可以在单散射机制下可靠地测量粒子和自由表面速度。在这里,我们将介绍气体中的喷出物实验,以及在这种情况下,多普勒测速仪如何能够获取喷出物的额外信息,即颗粒大小的信息。我们解释了气体中喷出物传输的原理,以及如何对其进行模拟。为了解释这些喷出物中光的多重散射,我们使用了辐射传输方程(RTE),该方程定量描述了 PDV 光谱图,以及它们不仅与速度而且与喷出物大小分布的关系。我们提醒了如何通过数值求解 RTE 来模拟光谱图,并展示了如何在流体力学喷出物模拟结果中这样做。最后,我们将这一复杂机制用于不同的喷出物传输场景,模拟出相应的谱图。将这些结果与实验结果相比较,我们在前所未有的水平上对喷出物的描述进行了迭代约束。这项工作展示了我们从最初的速度诊断中恢复粒度信息的能力,但更重要的是,它展示了我们如何利用现有的喷出物模拟,通过模拟来捕捉实验频谱图的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信