Ultrasonic characterization of bonding interfaces using Stoneley waves

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Haonan Ju, Tianming Ye, Wenxiang Hu, Hengguang Shen
{"title":"Ultrasonic characterization of bonding interfaces using Stoneley waves","authors":"Haonan Ju, Tianming Ye, Wenxiang Hu, Hengguang Shen","doi":"10.1063/5.0222221","DOIUrl":null,"url":null,"abstract":"An ultrasonic nondestructive method for evaluating bonding interface properties using Stoneley waves was proposed. First, a theoretical model was established. In this model, the dispersion relationship of the Stoneley wave at the quartz–steel interface and the transient signals generated by a pulse were analyzed. Significant differences were observed in the dispersion characteristics of Stoneley waves under different weak bonding conditions. Laser ultrasonic experiments were conducted to confirm the theoretical predictions, in which different interfacial strengths were simulated through the bonding–curing times. Based on these results, the inversion method was implemented to reconstruct the interfacial stiffness by using the corresponding dispersion of the Stoneley wave at different quartz–steel bonding interfaces extracted by the spectral analysis method. The results showed a similar tendency to those shown by theoretical predictions. Finally, the reconstructed interfacial stiffnesses were used to calculate the transient waveforms of the interface waves at different bonding–curing times, and the results showed good consistency with the experimental results, thereby verifying the rationality of the inversion results.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"12 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222221","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An ultrasonic nondestructive method for evaluating bonding interface properties using Stoneley waves was proposed. First, a theoretical model was established. In this model, the dispersion relationship of the Stoneley wave at the quartz–steel interface and the transient signals generated by a pulse were analyzed. Significant differences were observed in the dispersion characteristics of Stoneley waves under different weak bonding conditions. Laser ultrasonic experiments were conducted to confirm the theoretical predictions, in which different interfacial strengths were simulated through the bonding–curing times. Based on these results, the inversion method was implemented to reconstruct the interfacial stiffness by using the corresponding dispersion of the Stoneley wave at different quartz–steel bonding interfaces extracted by the spectral analysis method. The results showed a similar tendency to those shown by theoretical predictions. Finally, the reconstructed interfacial stiffnesses were used to calculate the transient waveforms of the interface waves at different bonding–curing times, and the results showed good consistency with the experimental results, thereby verifying the rationality of the inversion results.
利用斯通里波对粘接界面进行超声波表征
提出了一种利用 Stoneley 波评估粘接界面特性的超声波无损方法。首先,建立了一个理论模型。在该模型中,分析了石英-钢界面上 Stoneley 波的频散关系以及脉冲产生的瞬态信号。在不同的弱结合条件下,斯通里波的频散特性存在显著差异。为证实理论预测,进行了激光超声波实验,通过粘合固化时间模拟不同的界面强度。在这些结果的基础上,采用反演方法,利用光谱分析方法提取的不同石英-钢结合界面上相应的 Stoneley 波频散特性,重建界面刚度。结果显示出与理论预测相似的趋势。最后,利用重建的界面刚度计算了不同粘接固化时间下界面波的瞬态波形,结果与实验结果显示出良好的一致性,从而验证了反演结果的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信