Theoretical prediction of chalcogen-based Janus monolayers for self-powered optoelectronic devices

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Yuxuan Sun, Naizhang Sun, Wenlin Zhou, Han Ye
{"title":"Theoretical prediction of chalcogen-based Janus monolayers for self-powered optoelectronic devices","authors":"Yuxuan Sun, Naizhang Sun, Wenlin Zhou, Han Ye","doi":"10.1063/5.0223915","DOIUrl":null,"url":null,"abstract":"Exploring potential two-dimensional monolayers with large photogalvanic effect (PGE) has been of great importance for developing self-powered optoelectronic devices. In this paper, we systematically investigate the generation of PGE photocurrent in chalcogen-based Janus XYZ monolayers (X/Y/Z = S, Se, Te; X ≠ Y ≠ Z) based on non-equilibrium Green's function formalism with density functional theory. The optimized Janus SSeTe, SeSTe, and TeSeS monolayers in the rectangular phase are shown stable and, respectively, possess 1.54, 1.49, and 1.74 eV indirect bandgaps. Illuminated by linearly polarized light, the PGE photocurrent without bias voltage can be collected in both armchair and zigzag directions. Unlike common Janus 2D materials with C3v symmetry, the photocurrent peak values of Janus XYZ monolayers do not come up with certain polarization angles, while the relations can be fitted by Iph = α sin(2θ) + β cos(2θ) + γ at each photon energy. Meanwhile, the maximum photoresponses of Janus SSeTe, SeSTe, and TeSeS monolayers are 2.02, 3.33, and 4.42 a20/photon, respectively. The relatively large PGE photocurrents and complicated polarization relations result from the lower symmetry of Janus XYZ monolayers. Moreover, the specific polarization angles for maximum photoresponses at each photon energy and the ratio between two transport directions are demonstrated, reflecting the anisotropy. Our results theoretically predict a potential Janus monolayer family for self-powered optoelectronic applications.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"43 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0223915","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring potential two-dimensional monolayers with large photogalvanic effect (PGE) has been of great importance for developing self-powered optoelectronic devices. In this paper, we systematically investigate the generation of PGE photocurrent in chalcogen-based Janus XYZ monolayers (X/Y/Z = S, Se, Te; X ≠ Y ≠ Z) based on non-equilibrium Green's function formalism with density functional theory. The optimized Janus SSeTe, SeSTe, and TeSeS monolayers in the rectangular phase are shown stable and, respectively, possess 1.54, 1.49, and 1.74 eV indirect bandgaps. Illuminated by linearly polarized light, the PGE photocurrent without bias voltage can be collected in both armchair and zigzag directions. Unlike common Janus 2D materials with C3v symmetry, the photocurrent peak values of Janus XYZ monolayers do not come up with certain polarization angles, while the relations can be fitted by Iph = α sin(2θ) + β cos(2θ) + γ at each photon energy. Meanwhile, the maximum photoresponses of Janus SSeTe, SeSTe, and TeSeS monolayers are 2.02, 3.33, and 4.42 a20/photon, respectively. The relatively large PGE photocurrents and complicated polarization relations result from the lower symmetry of Janus XYZ monolayers. Moreover, the specific polarization angles for maximum photoresponses at each photon energy and the ratio between two transport directions are demonstrated, reflecting the anisotropy. Our results theoretically predict a potential Janus monolayer family for self-powered optoelectronic applications.
用于自供电光电设备的基于铬化砷的 Janus 单层膜的理论预测
探索具有大光电效应(PGE)的潜在二维单层对于开发自供电光电器件具有重要意义。在本文中,我们基于密度泛函理论的非平衡格林函数形式主义,系统地研究了基于砷化镓的 Janus XYZ 单层(X/Y/Z = S、Se、Te;X≠Y≠Z)中 PGE 光电流的产生。优化后的矩形相 Janus SSeTe、SeSTe 和 TeSeS 单层显示稳定,分别具有 1.54、1.49 和 1.74 eV 的间接带隙。在线性偏振光的照射下,PGE 光电流无需偏置电压即可在扶手和之字形方向上收集。与具有 C3v 对称性的普通 Janus 2D 材料不同,Janus XYZ 单层材料的光电流峰值并不随特定偏振角的变化而变化,在每种光子能量下,其关系可以用 Iph = α sin(2θ) + β cos(2θ) + γ 来拟合。同时,Janus SSeTe、SeSTe 和 TeSeS 单层的最大光响应分别为 2.02、3.33 和 4.42 a20/光子。相对较大的 PGE 光电流和复杂的偏振关系是由 Janus XYZ 单层的较低对称性造成的。此外,我们还证明了每个光子能量下最大光响应的特定偏振角以及两个传输方向之间的比率,这反映了各向异性。我们的研究结果从理论上预测了自供电光电应用的潜在 Janus 单层系列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信